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ABSTRACT

Traffic sign detection is an important task in assisted safety
and autonomous driving. It is important to continuously de-
tect the traffic signs emerged on the road. Currently, most
object detection methods make independent detections based
on single images. When we apply these methods directly to
a video clip to detect traffic signs without taking into account
temporal correlations among adjacent frames, missed detec-
tions or incorrect detections can frequently occur due to mo-
tion blur, size change, partial occlusion, and/or bad pose. In
this paper, we fully exploit the temporal consistency of traf-
fic sign detection in videos. More specifically, we incorporate
information of adjacent frames with high confidence scores
to enhance the discovery of potential objects in the missed
or incorrect detected frames by “recovering” the missed RoI
proposals or by “improving” the incorrect RoI proposals with
low confidence scores. Our method can be regarded as a
“detection-by-tracking” strategy, which results in a more ro-
bust detection performance in videos.

Index Terms— Traffic sign, video object detection, RoI
proposals, detection-by-tracking

1. INTRODUCTION

In recent years, both academic and industrial communities
pay great attention to autonomous driving. Traffic signs are
important components in driving scenarios. Not only can traf-
fic signs provide reliable navigation, but also they can be a
good reference to facilitate other applications in autonomous
driving as they always have standard size, pattern, and shape.
For example, they can be utilized to create reliable correspon-
dence among frames to carry out robust local bundle adjust-
ment in simultaneous localization and mapping (SLAM), con-
tributing to a better vehicle self-localization [1, 2]. It is thus
critical for an autonomous driving system to reliably detect
and track the traffic signs in video sequences.

Previously, traffic signs are usually detected and classified
through color-based as well as shape-based methods [3]. In
recent years, with the major advances of convolutional neu-
ral networks (CNNs) based detectors [4, 5, 6], we have ob-
served a large improvement in detection accuracy and effi-

ciency [7]. However, most traffic sign detections are mainly
carried out based on single still images [7, 8], in spite of the
fact that a moving dash camera captures the environment con-
tinuously in a driving scenario, which should mandate a more
effective way of detecting the traffic signs in a video. If we
just simply apply the independent object detection methods
on images, missed detections (i.e., no bounding boxes are
identified on the objects) or incorrect detections (e.g., incor-
rect classifications, false positive detections, incorrect loca-
tions and/or sizes of bounding boxes) can be frequently ob-
served due to motion blur, partial occlusion, scale change, and
bad viewing perspective [9, 10]. Some examples of single-
image missed/incorrect detection results in video sequences
are shown in Figure 1. The detection mechanism in this way
is problematic since we totally ignore the temporal correspon-
dence among image frames within a video sequence.

In this paper, we focus on improving the traffic sign detec-
tion performance in autonomous driving scenarios. To detect
traffic signs effectively and robustly in videos, we exploit the
temporal consistency among image frames, i.e., the highly
correlated location and appearance information of the same
traffic sign among consecutive image frames. Our proposed
method is based on the two-stage object detector, Faster R-
CNN [4], where the Region Proposal Network (RPN) identi-
fies a bunch of object proposals and the multi-task classifica-
tion and bounding box regression are then carried out on the
pooled features within these region of interests (RoIs). When
the traffic sign is in bad condition, the pooled feature cannot
well represent its property, resulting in missed detections or
incorrect bounding box regression. Besides, Softmax used in
classification can also mislead the object to a wrong classi-
fication result because traffic signs in the same big category
are pretty similar when the signs are relatively small. If we
can leverage the good detection results with high confidence
scores in adjacent frames, the detection performance of the
whole sequence can thus be improved to a large extent, i.e.,
either by recovering the missed detections or improving the
incorrect detections.

1) We explore a detection-by-tracking mechanism for traf-
fic sign detections in videos to benefit the autonomous driving
in recovering or improving detections of objects more effec-
tively and robustly.
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Fig. 1. Examples of traffic sign detections from a single-image based detector. Red boxes denote incorrect classes and green
boxes denote correct classes, note that many missed detections and incorrect detections with wrong sizes and locations exist.

2) The temporal correlation information of the same traf-
fic sign among video frames is fully exploited based on our
shortest path search over all the candidate object proposals.
The classification and regression performance of promising
object proposals can be greatly enhanced using consecutive
frames’ location/size and pooled feature information.

3) Our method can solve the detection bottleneck of most
single-image based models, where the detection performance
may be limited due to practical reasons, such as limited train-
ing samples.

The rest of the paper is organized as follows. In Section
2 we survey the related works. Our proposed system is intro-
duced in Section 3, aiming at solving the key issues raised in
the baseline method of single-image based video object de-
tections. Experimental results and discussions are given in
Section 4, followed by the conclusion in Section 5.

2. RELATED WORKS

In autonomous driving, it is essential to have a continuous
and reliable perception of the outside environment. Thanks
to the great advances of deep convolutional neural networks
(CNNs), object detection [4, 5, 6] in images gradually be-
comes an easy task and provides the driverless car with thor-
ough information. Traffic sign detection also experiences a
considerable improvement when employing the deep learn-
ing based techniques [7]. Widely used object detection meth-
ods can be divided into single-stage and multi-stage detec-
tors. YOLO [5] and SSD [6] are representatives of single-
stage object detectors, which identify and localize objects
directly over a dense sampling of possible locations. On
the other hand, Faster R-CNN [4], also known as a region-
based method, divides the object detection process into two
stages: 1) region proposals are first generated through se-
lective search or a regional proposal network (RPN); 2) the
multi-task classification and bounding box regression are then
carried out on the region candidates. In general, region-based
methods, which pass the proposal candidates with a higher
object-containing probability to the subsequent object clas-
sification and bounding box regression tasks, can produce

better detection performance compared with the single-stage
methods [11].

However, there is an acknowledged problem in single-
image based object detection, i.e., the detection performance
only independently relying on a single image is not reliable
when dealing with different image quality within a sequence
due to motion blur, video defocus, partial occlusion or bad
pose. People gradually pay attention to leverage the temporal
cues for object detection in video sequences [9, 10, 12, 13].
Zhu et al. [9] propose a feature aggregation along motion path
guided by an optical flow scheme to improve the feature qual-
ity. Similarly, Wang et al. [10] propose a fully motion-aware
network to jointly calibrate the object features on pixel-level
and instance-level. They both operate on the extracted fea-
tures to pursue better feature representations. However, flow
estimation is very time consuming, and the aggregated fea-
tures cannot guarantee accurate and robust results with missed
and/or incorrect detections still occurring. Kang et al. [12]
propose a tubelet proposal network to generate spatially as-
sociated bounding boxes across time, further processed by a
Long Short-term Memory (LSTM) recurrent network. The
method cannot deal with large motion since the initialized
proposals are aligned at the same position in consecutive
frames. Feichtenhofer et al. [13] tune a frame-based object
detection and across-frame track regression network to im-
prove the simultaneous detection and tracking performance.
The aforementioned methods all perform end-to-end training,
i.e., adequate training samples are required. From a post-
processing perspective, Han et al. [14] propose to boost po-
tential detections with lower scores by using detected objects
with higher confidence scores from nearby frames. How-
ever, the objects are purely selected based on Intersection-
over-Union (IoU) among frames to form a sequence without
taking into account the embedded features of the proposal ob-
jects. These video object detection methods are all performed
based on the dataset of ImageNet VID dataset [15] where the
camera movement is moderate. Though the ideas are moti-
vating and inspiring, they are not suitable in the autonomous
driving scenarios due to extraordinary viewing changes from
a dash camera mounted on a moving car.
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Fig. 2. The framework of our proposed algorithm.

The most similar work with our approach is [16], where
multi-object tracking is explored purely based on an object
detector. We both pay attention to object proposals. Differ-
ently, Bergmann et al. [16] use the detected object’ location
of the current frame to initialize the next frame’s object pro-
posal, following a tracking-by-detection workflow. In our pa-
per, to mitigate the influences from large motion, we adopt
a different procedure for proposal selection, both considering
the motion cues and feature similarity among adjacent frames,
which can lead to a more robust and accurate detection result.

3. PROPOSED DETECTION-BY-TRACKING
SCHEME

In this section, we will address in details our innovative ap-
proach for traffic sign detection in videos, as shown in Fig-
ure 2.

We assume there are T image frames in a video sequence,
{I1, I2, ..., IT }, and there are K distinct classes of the traf-
fic signs. Through our proposed method, we want to detect
the traffic signs in every image frame It within the video se-
quence, {bit, cit|t ∈ T, ct ∈ K}, where bit = (xt, yt, wt, ht)
and cit denote the bounding box and the class label of the i-th
object in the t-th frame. As is shown in Figure 2, the whole
framework consists of the following 5 steps.

1) Traffic sign detection based on single-image object de-
tection. We use a multi-task loss L to train a Faster R-CNN
detector. Let Lcls denote the cross-entropy loss and Lreg be
the smooth L1 loss, thus, L is defined as,

L(p, q) = Lcls(p, p
∗) + λp∗Lreg(q, φ(f)), (1)

where the hyper-parameter λ balances the two losses; p rep-
resents the class probability for each RoI, and p∗ corresponds
to the ground-truth label. q represents the regression target,
while φ(f) is the predicted bounding-box regression offset,
which takes the pooled feature as input.

We feed each image frame in {I1, I2, ..., IT } into the
single-image object detector, which gives a preliminary de-
tection result {Bt, Ct} for It, where Bt = {b1t , b2t , ...} and
Ct = {c1t , c2t , ...}. This step only regards the video sequence

as a collection of independent images and ignores the tem-
poral consistency of objects in consecutive frames. It in-
evitably leads to fluctuations in detection performance, e.g.,
some frames with traffic signs have either no traffic sign de-
tected (missed detections) or incorrect detections with wrong
classes or deviated locations/sizes of bounding boxes.

2) Proposal identification in between two detected signs
(Two-End). Through Step 1, we observe some missed detec-
tions or incorrect detections. Because the same traffic sign’s
embedded features should be similar among adjacent frames
and its location should change gradually, which is consistent
with the car moving pattern, the temporal consistency among
frames should be exploited. For the i-th traffic sign, we as-
sume that they have been both detected successfully in frames
It′ and It′′(t′′ > t′) with high confidence scores on the same
traffic sign class ci and missed or incorrect detections oc-
curred in between. Leveraging the “track” information, we
use the detected boxes of the i-th object, which are class la-
beled and bounding box regressed from the 2nd stage of the
Faster R-CNN, i.e., bit′ and bit′′ , to generate a promising region
Ri for either the missed or incorrectly detected signs between
the two high-confidence detected frames of It′ and It′′ . Here,
the promising region Ri is defined as the smallest rectangle
which covers both bit′ and bit′′ . Within Ri, for every missed or
incorrectly detected frame It we can keep a set of candidate
object proposals {Pt}, as provided from the Faster R-CNN.

3) Backtracking proposals from a detected sign (Back-
Track). Through Step 1, we may only detect the traffic signs
starting from frame It′′ with high confidence score, with
missed or incorrect detections occurring before frame It′′ .
Based on the moving trajectory of the detected traffic signs
from It′′ , we can infer the promising regions for either the
missed or incorrectly detected signs before It′′ , which are nor-
mally smaller and difficult to be correctly detected. Through
this step, for every missed or incorrectly detected frame It
(couple frames before It′′ ) we can keep a set of candidate ob-
ject proposals {Pt}, as provided from the Faster R-CNN.

4) Shortest path search based on RoI aligned features of
regressed boxes. We assume the RoI aligned feature related
to the proposal box bit ∈ Pt is f it for the i-th traffic sign in
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frame It. A shortest path can be created for traffic sign be-
tween It′ and It′′ in a “Two-End” mode, with {bit′ , f it′} and
{bit′′ , f it′′} being served as the starting and ending nodes (in
case of Step 3, there will be no specific starting node, while
a shortest path can still be generated as a “Back-Track” mode
shown in Figure 2). The proposals {Pt|t′ < t < t′′} in the
promising region Ri in image frames {It|t′ < t < t′′} can
serve as intermedia nodes. Only proposals in adjacent frames
have edges, whose edge costs are defined as Euclidean dis-
tance of RoI aligned features extracted from the two proposals
located in corresponding adjacent frames. After constructing
the graph, we perform the Dijkstra algorithm [17], a shortest
path algorithm, to return a path from {bit′ , f it′} to {bit′′ , f it′′}.
The objective function can be defined as Equation 2, where
d() is the distance measure. The features of selected interme-
dia nodes in {Pt} are considered to be the most similar and
consistent with the starting and ending nodes, i.e., previous
and future detections for Step 2. On the other hand, for Step
3, we find the prior missed detections which are most consis-
tent with the later detection bit′′ .

argmin
jt′ ,...,jt,...,jt′′

t′′∑
t′

d(ft(jt), ft+1(jt+1)),

s.t., t′ ≤ t < t+ 1 ≤ t′′, jt ∈ {Pt}.

(2)

5) Class-specific bounding box regression. Either using
“Two-End” (Step 3) or “Back-Track” (Step 4), we keep the
proposals which are expected to contain the specific traffic
sign in missed detection or incorrect detection frames. For
each selected proposal box (x, y, w, h) with RoI feature f ,
we carry out a class-specific bounding box regression. To
recover from the predicted parameterized coordinates output
(φx(f), φy(f), φw(f), φh(f)), we use Equation 3 to get the
final regressed bounding box (x̂, ŷ, ŵ, ĥ).

x̂ = wφx(f) + x, ŷ = yφy(f),

ŵ = we(φw(f)), ĥ = he(φh(f)).
(3)

In all, compared with single-image detection methods
which offers the detections based solely on the classification
confidence scores independently, we make use of the detec-
tion results of frames with high confidence scores, along with
the temporal consistency of refined RoI aligned features, to
help discover the potential objects in missed or incorrect de-
tection frames through careful associations of the proposals.

4. EXPERIMENTS

4.1. Dataset

To train a basic single-image based traffic sign detector, we
use the German traffic sign benchmark (GTSDB) [8] because
it provides detailed ground truth annotations. The images are
collected from different scenarios, which can help our detec-
tor to learn and generalize better in the wild. GTSDB and

KITTI [18] are both collected in Germany, thus they contains
the same traffic sign types. We choose several sequences,
0005, 0014, 0015, 0029 and 0084, from the KITTI raw dataset
to evaluate our proposed approach about video-based traffic
sign detection. The sequences, in total 1578 frames, are cho-
sen because traffic signs are frequently observed. We have la-
beled the traffic signs with a tight bounding box as the ground
truth in KITTI for performance comparison.

4.2. Experiment Setup

To train a baseline single-image based traffic sign detector,
we have implemented the Faster R-CNN based on [19]. The
shared convolutional layers are initialized by a pre-trained
model for ImageNet classification (ResNet R-50-C4). A
learning rate of 0.0025 is used for the first 12K iterations, and
is then decreased by 0.1 each time for another 4K and further
2K iterations, until it stops at 18K iterations. The experiments
are carried out on an NVIDIA Quadro GV100 32GB GPU.

4.3. Results

The single image based Faster R-CNN traffic sign detector
is not perfect enough due to limited training samples and
challenging wild images. From our observations, the detec-
tion results for the same traffic sign in a video through the
single-image based detector is fluctuating, forming a series
of tracklets separated by the missed/incorrect detections. In
general, the mistakes are likely to occur when the sign is far
away or when the patterns of signs are pretty similar. Follow-
ing the steps described in Section 3, we use the information
from neighboring frames to boost the discovery of signs in the
missed and incorrect frames.

Due to limited number of training video clips with traffic
signs, it is tough to employ the video object detection methods
like [9, 10, 12], though these methods are not proper in au-
tonomous driving scenarios with large motion changes. For a
fair comparison, we implement the method proposed in [16],
entitled Tractor-based, where the regression of the Faster R-
CNN object detector aligns the existing bounding boxes in
frame It−1 to the object’s new position at frame It. We set
a tolerant threshold of 0.001 for accepting the new detection,
which will be used as an initialization of object position in
frame It+1. The tracking will be interrupted once the classifi-
cation confidence score is not supportive, in order to prevent
potential false positives.

We use Average Precision (AP) and Average Recall (AR),
averaged over all traffic sign categories with the 0.5 IoU
threshold, to describe the detection performance. Table 1
shows the results, where the AP is 0.628 and AR is 0.626
for the basic Faster R-CNN detector on the chosen KITTI
sequences. Taking into account the temporal information,
both Tractor-based and our proposed Shortest Path (SP) based
methods can achieve a better performance. The AP can even
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Fig. 3. Qualitative performance of recovered or improved bounding boxes from originally missed/incorrect detections. Red
boxes denote incorrect detections either due to wrong classification or wrong location/size of bounding boxes, green boxes
denote the correct detections with high confidence, and orange boxes denote the missed or incorrect detections recovered by
our proposed method with correct class labels and accurate localizations.

Table 1. The performance of different methods.
Method AP@.50 AR@.50

Faster R-CNN 0.628 0.626
Tractor-based 0.640 0.647

Ours (SP) 0.733 0.748

be improved to 0.733 and AR reaches 0.748 for our proposed
algorithm. The performance of the Tractor-based method is
significantly inferior to that of ours, it is because the mov-
ing camera in driving scenarios brings about huge differences
among frames, resulting in low-quality box initializations.

Figures 3(a) and (b) qualitatively show recovered frames
of detection results of our proposed algorithm in two exam-
ple sequences and Figure 3(c) shows detection-by-tracking re-
sults of various traffic signs in our dataset. In Figure 3(a), the
triangular traffic sign is only detected with high confidence on
the last frame, and the remaining three missed frames (frames
3,4,5) before it and three incorrect detections of wrong sizes
(frames 1,2,6, with red boxes) are all recovered or corrected
as shown with orange bounding boxes. Similarly, the five de-
tected circular speed limit signs with green bounding boxes
are used to successfully recover the two missed signs with or-
ange boxes before it. In Figure 3(b), two missed detected
signs (frames 5,6) are recovered (with orange boxes) from
two detected high-confidence green boxes (frames 7,4), while
three incorrect detections (frames 1,2,3) are remedied through
backtracking based on frame 4.

4.4. Shortest Path vs. Maximum Score

To quantitatively evaluate the effectiveness of our proposed
method, we also compare our method with another procedure
regarding proposal selection, i.e., maximal confidence score

based method (MS). Regressed proposal with the maximal
confidence score of the same sign category is chosen in the
promising region for MS method, whose objective function
can be defined as Equation 4, where sc() is the confidence
score of the same sign category c.

argmax
jt

t′′∑
t′

sc(ft(jt)), s.t., t
′ < t < t′′, jt ∈ {Pt}. (4)

Three metrics are used to describe the discrepancy be-
tween predictions and ground truths following the protocols
in [12]. Mean absolute pixel difference (MAD), mean rela-
tive pixel difference (MRD), and mean IoU between predicted
boxes and target boxes are calculated to evaluate the bounding
box detection quality. We give a comparison between SP and
MS in Table 2, where we show the performance of two dif-
ferent recovering schemes, i.e., of the “Two-End” (with start-
ing and ending high confidence detections) and “Back-Track”
(from the last frame to recover prior missed detections).

Table 2. The performance of MS and SP methods.
Overall Two-End Back-Track

MAD MRD IoU MAD MRD IoU MAD MRD IoU
MS 2.31 0.104 0.681 2.65 0.119 0.634 1.81 0.082 0.751
SP 2.06 0.093 0.706 2.31 0.103 0.667 1.68 0.079 0.765

We can see that both short-path based search and max-
score based search can find the objects with only a slight off-
set with ground truth labels. SP has a better performance in
locating objects, though it may hold a lower confidence score
returned by the original Faster R-CNN detector. While MS ig-
nores the temporal RoI feature consistency, SP leverages the
similarity of refined RoI pooled feature in adjacent frames and
thus contributes to a better performance.
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5. CONCLUSION

In this work, we propose a framework based on a two-stage
object detection method for more robust traffic sign detection
in videos. We focus on discovering the best proposal gener-
ated by RPN of the trained Faster R-CNN detector based on
the generic single-image object detection result. Simulations
show that our framework can achieve a consistent perfor-
mance improvement over single-image based detections. The
proposed detection-by-tracking scheme correlates the tempo-
ral information throughout frames in a video and can pro-
vide more robust and reliable detection results. Besides, our
method mainly focuses on the inference phase without any
modification in the training phase, therefore our framework
can be easily applied to other single-image region-based de-
tection networks to improve the performance in video object
detection.
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