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Abstract—Image-to-sketch translation is to learn the mapping
between an image and a corresponding human drawn sketch.
Machine can be trained to mimic the human drawing process
using a training set of aligned image-sketch pairs. However, to
collect such paired data is quite expensive or even unavailable for
many cases since sketches exhibit various level of abstractness
and drawing preferences. Hence we present an approach for
learning an image-to-sketch translation network via unpaired
examples. A translation network, which can translate the repre-
sentation in image latent space to sketch domain, is trained in
unsupervised setting. To prevent the problem of representation
shifting in cross-domain translation, a novel cycle+ consistency
loss is explored. Experimental results on sketch recognition and
sketch-based image retrieval demonstrate the effectiveness of our
approach.

I. INTRODUCTION

Sketching has a long history in human society that people

are able to draw a few line strokes to record visual world since

ancient times. Defined as sketch synthesis in computer vision,

which aims to teach machine to generate sketch from real im-

age just as humans do, has been attracted increasing attentions

lately. Human visual system is so powerful that people can

easily draw a sketch to express a complex real-world object

just given a glance, whereas it is quite challenging for machine

to perform similar ability due to the inherent ambiguities in

sketch, e.g. highly abstractness and large appearance variance

[15], [17], thus leading to severe cross-domain gap between

image and sketch [13], [14]. Recently, due to the success of

generative adversarial learning [4], sketch synthesis could be

treated as an image-to-image translation problem [7], [18].

However, almost all the prior arts [1], [14] typically require

tens of thousands image-sketch paired training examples to

alleviate the above mentioned difficulties. Requiring such a

large amount of data is notorious since it is labour costly to

collect the one-to-one mapping image-sketch paired data.

Therefore, in this paper, we propose an unsupervised

image-to-sketch translation network which could be trained

only given unpaired image-sketch data. The problem of un-

paired/unsupervised image-to-sketch translation is difficult due

to the large cross-domain gap—no paired examples showing

how a real image could be transferred to a corresponding

human sketch. Similar problem has been studied for unpaired

image-to-image translation, which has achieved impressive

results by using cycle consistency based on coupled GANs [6],

[12], [18]. However, our unpaired image-to-sketch learning

task is considered as much harder due to the larger domain gap

exists comparing with the image-to-image case. To solve this

problem, an end-to-end network based on variational autoen-

coder (VAE) [9] and generative adversarial network (GAN)

is proposed. Specifically, we model each domain using VAE

to obtain their encoder and decoder, i.e., (Eimage, Dimage)

and (Esketch, Dsketch). Then we attempt to learn a translation

network (TranNet) to convert the representation in image

domain to sketch domain, i.e., TI→S(image) → sketch,

which could be further used to generate a corresponding sketch

Dsketch(TI→S(image)). In particular, a novel Cycle+ Consis-

tency is developed to explicitly restrict the representations in

two latent spaces for the same input image to be consistent.

Edge of real image is importantly embedded as an additional

shape prior for regulating the translation of the representations

to prevent representation shifting, hence can enforce a better

image-sketch resemblance in appearance.

The contributions of this paper can be summarized as

follows: (i) an unsupervised model based on VAE-GAN is

proposed for stroke-level sketch synthesis by using unpaired

image-sketch data. (ii) A novel cycle+ consistency loss is

designed for regulating the domain-specific representations to

be consistent, hence restricting the TranNet to be instance

sensitive. (iii) Edge cue is utilized to further constrain the

TranNet to learn to encode shape knowledge provided by input

image. (iv) Our model is also applicable to generate image

from sketch in reverse order.

II. RELATED WORK

Unpaired Image-to-Image Translation The problem of

sketch synthesis can be categorized as image-to-image trans-

lation. A large body of literature on translation algorithms in

the supervised setting [7], [8], [16], which assumes paired

examples are available. However in many cases, requiring

paired data is expensive. Hence several models are presented

to tackle the unpaired setting lately. CycleGAN [18] adopts

a bidirectional mapping model based on coupled GAN with

cycle consistency loss. UNIT [12] assumes a shared-latent

space existed across two domains and a framework based

on coupled GANs is proposed. MUNIT [6], [3] and DRIT

[11] further decompose the feature space into shared content

space and domain specific style space, hence achieve better

diversity and improved quality on produced image. However,

most works tackle on pixel-to-pixel level, which cannot be

readily applied to pixel-to-stroke translation problem.

Vector Sketch Generation Despite the success of pixel-

level image generation on image synthesis and editing [7],

generalizing them onto sketch is proven to be nonsense [14].
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Fig. 1. Overview of network training. Note that edge is only used for training.

Learned from how humans draw object, sketch-rnn [5], which

is proposed to express sketch as a sequential vector represen-

tation of strokes, opens the door for vector sketch generation.

Specifically, a RNN-based VAE model is proposed to learn

from pen stroke actions of humans, which can generate im-

pressive sketch generation results. While it cannot be applied

for cross-domain translation. Pix2seq [1] replaced sketch-rnn

with a CNN encoder, hence can produce several novel sketches

in vector format given an input sketch image. However,

regarding the generated sketch details, the resemblance to the

corresponding input image is unsatisfied [14]. In [14], shortcut

cycle consistency loss is developed and a hybrid supervised-

unsupervised multi-task learning framework is proposed for

sketch synthesis. Although promising results can be obtained,

a large number of paired image-sketch examples are required

for training. On the contrary, ours is a fully unsupervised

approach that could be trained without paired data.

III. METHODOLOGY

A. Model Overview

The goal is to learn the mapping between real image and

stroke-level vector sketch in an unsupervised way. Given a set

of unpaired real images I ∼ PI and sketches in vector format

S ∼ PS , we aim to (i) learn two encoders EI and ES to map

image and sketch into their latent space, i.e., EI : I → ZI

and ES : S → ZS , thus (ii) to translate the representation

in one domain to another by learning translation networks,

TI→S : ZI → ZS for image-to-sketch, and TS→I : ZS → ZI

in reverse order, and (iii) to learn two mappings GI : ZI → I ,

GS : ZS → S, which can generate image and sketch

from their latent space representations respectively. In addi-

tion, adversarial discriminators including DI , DS , DI→S and

DS→I are introduced, where DI and DS aim to distinguish

between real and translated data in image and sketch domain

respectively; DI→S is to distinguish between representation

in sketch domain ZS and the translated representation in

sketch domain from image domain ZIS ; Similarly, DS→I is

to discriminate between ZI and ZSI . Fig. 1 shows the training

process of our network, details can be found in the following.

B. Objectives

VAE Loss We apply VAE losses both on image and sketch

branches to learn their latent space separately. For image

branch, EI is a CNN encoder outputs a hidden feature hI ,

which is further projected into µI and σI by using fully

connected layer, hence to construct latent feature vector zI ∼
N(µI , σ

2
I ) where zI ∈ ZI . zI is then fed into the generator

GI which is a transposed CNN to reconstruct image. Hence

the loss is defined as:

LV AE
I = Lrecon

I + αLKL
I (1)

where Lrecon
I = Ei∼PI

[‖GI(EI(i))− i‖1] is the reconstruc-

tion loss, and LKL
I = KL

(

N(µ, σ2)||N(0, 1)
)

is the KL

divergence distance between N(µ, σ2) and N(0, 1). α controls

the relative importance of the KL loss.

For sketch branch, given a sketch described by a set of

points, each point is denoted as (x, y, p1, p2, p3), where (x, y)
is the position and (p1, p2, p3) denotes different pen actions.

ES is a sketch encoder built on bi-directional LSTM. Our

generator GS is a GMM embedded LSTM adopts a recurrent

structure, which feed the previous estimated stroke point by

GMM as input for the next prediction. This design suits for

our unsupervised setting, since no paired sketch strokes are

available at training stage, and facilitates sketch synthesis

that could be achieved given an image only, GS(TI→S(ZI)).
Similar to [14], the loss is defined as:

LV AE
S =−

1

Nmax

(

Ns
∑

i=1

log(PGMM (xi, yi|θi))

+

Nmax
∑

i=1

3
∑

j=1

pij log(qij))

(2)

where Nmax represents the upper bound of the amount of

stroke points in one sketch and Ns means the number of points

actually exist in a sketch. pij and qij are the real and predicted

distribution of painting action separately.

Adversarial Loss Adversarial losses are used to (i) enforce

the generated data to be undistinguished from real data; For

the image-to-sketch translation F = {EI , TI→S , GS} : I → S
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Fig. 2. Comparison between original cycle consistency and our proposed
cycle+ consistency loss. Best viewed in color.

and its discriminator DS , the adversarial loss is:

LGAN
I→S = Es∼PS

[logDS(s)]+Ei∼PI
[log(1−DS(F (i)))] (3)

similarly, the adversarial loss for sketch-to-image translation is

LGAN
S→I . (ii) further enforce the translated latent representation

to be undistinguished from real ones. For image-to-sketch

representation translation F ′ = {EI , TI→S} : ZI → ZS and

its discriminator DI→S , the loss can be defined as:

LGAN
ZI→ZS

= Es∼S [logDI→S(Zs)]+Ei∼I [log(1−DI→S(F
′(i)))]

(4)

similar loss LGAN
ZS→ZI

could be also defined.

Cycle+ Consistency Loss As shown in Fig. 2, original

cycle consistency [18] does not theoretically guarantee the

appearance consistency between the synthesized sketch and

the reference image in our problem. In other words, shift on

latent representation might happen, which is non-trivial in the

absence of unpaired examples that would lead to mismatching

translation, e.g. a low-boot sketch generated from a high-boot

image. To address this issue, the image i corresponding edge

iedge in vector format is exploited as auxiliary knowledge

for explicitly regulating synthesized sketch to be consistent

to input image, by pulling zIS = TI→S(EI(i)) together with

zE = ES(iedge) within the sketch latent space. Formally, this

constraint is a L1 loss, Ledge = Ei∼PI
[‖zIS − zE‖1]. Ad-

ditionally, we uniformly formulate the image-to-sketch cycle

and sketch-to-image cycle in one translation pass, i.e., regard

to the translation started from image i: ZI(i) → ZIS(i) →
Z

′

I(i) → Z
′

IS(i) as shown in Fig 2. Hence the final cycle+

consistency loss is defined as:

Lcycle+ = Ledge + LI→S→I + LS→I→S (5)

where LI→S→I = Ei∼PI
[‖ZI(i)− Z

′

I(i)‖1] and LS→I→S =
Ei∼PI

[‖ZIS(i) − Z
′

IS(i)‖1]. Note that edge is only used at

training stage.

Full Objective Our full objective is :

Lfull = LGAN
I→S + LGAN

S→I + LGAN
ZI→ZS

+ LGAN
ZS→ZI

+ λ(LV AE
I + LV AE

S ) + γLcycle+

(6)

where λ and γ are used to control the importance of VAE loss

and cycle+ consistency loss. After training, sketch synthesis is

achieved by applying image encoder EI , translation network

TI→S and sketch decoder GS given an input image i, i.e.,

GS(TI→S(EI(i))).

IV. EXPERIMENTS

Follow [14], experiments on sketch recognition and fine-

grained SBIR are used for evaluating the quality of the synthe-

sised sketch. Shortcut Cycle [14] and Pix2seq [1], which both

work on paired examples, serve as alternatives for comparison

since no existing unsupervised methods for image-to-sketch

translation. We also show our model is capable of sketch-to-

image translation in this section.

Experimental setting and datasets: QMUL-Shoe-Chair-V2

[17], which is the largest fine-grained image-sketch dataset, is

utilized for evaluation. Specifically, the split of shoes, which

contains 2000 images and 6648 sketches, are used in our

experiments. The dataset is split into training and testing set

by ratio of 9:1 that there are totally 1800 images with 5982

sketches for training and 200 images with 666 sketches for

testing. To train our model, we randomly pair an image with

a sketch in training set. Hence there are 1800 ∗ 5982 ≈ 107

samples for training.

Competitors: Shortcut Cycle [14] and Pix2seq [1] are state-of-

the-arts on sketch synthesis, which Shortcut Cycle is a hybrid

supervised-unsupervised learning model and Pix2seq is a fully

supervised method. More specifically, we retrain these two

models by using the default training set split of QMUL-Shoe-

Chair-V2 dataset for comparisons. In addition, to illustrate the

effectiveness of key components, the alternative versions based

on our full model are also evaluated, including our full model

trained without translation network (Full - TranNet), without

edge used (Full - Edge) and without cycle+ consistency loss

(Full - Cycle+).

Evaluation Metrics The same metrics are used follow [14]:

(i) Recognition Score: To evaluate the how recognizable of

generated sketches, a CNN-based classifier [10] is trained on

TU-Berlin dataset [2] which contains 20,000 sketches over

250 categories. Then it is used to test if the synthesised sketch

could be correctly recognized as shoe in class level. (ii) FG-

SBIR Accuracy: A FG-SBIR triplet network [17] is retrained

on the QMUL-Shoe-Chair-V2 training set, to evaluate the

appearance resemblance of the synthesised sketch and the

input image.

Results and discussions Example qualitative results are

shown in Fig. 3. We can observe that our full model can gen-

erate various types of shoe sketches, and the line drawings are

simpler but more realistic with finer details comparing against

with other competitors. It is interesting that the shoelace is

even nicely drawn by our model (fifth and sixth row), while

sketches synthesized by Shortcut Cycle and Pix2Seq often

contains some unrealistic drawing shapes, lines and wrong

details. Additionally, we can witness the importance of the

key components of our model, the synthesised shoes can

hardly resemble to the input image references regards in both

overall shape and details. Quantitative results are shown in

Table I. The recognition scores suggest that our full model

achieves the best (65.84%) comparing against with Shortcut

(59.78%) and Pix2Seq (31.61%) in acc.@1. Ours drop down

to the second place in acc.@10 but still close to the best



Fig. 3. Comparison of qualitative results.

TABLE I
QUANTITATIVE RESULTS IN TOP-1 AND TOP-10 ACCURACY OF

RECOGNITION AND FG-SBIR.

Recognition FG-SBIR

Method acc.@1 acc.@10 acc.@1 acc.@10

Human sketch 78.02% 94.98% 9.73% 44.74%

Shortcut Cycle 59.78% 89.71% 2.98% 17.43%

Pix2Seq 31.61% 65.41% 2.04% 11.77%

Full - TranNet 83.45% 94.69% 0.63% 5.02%
Full - Edge 62.39% 82.98% 0.78% 6.91%
Full - Cycle+ 85.53% 95.92% 1.26% 8.63%

Our Full Model 65.84% 85.68% 2.51% 17.27%

algorithm Shortcut (85.68% vs 89.71%). Interestingly, our

Full - Cycle+ and Full - TranNet largely outperforms the

others and even is better than human data both in acc.@1

and acc.@10. This is because these two synthesizers can draw

good shoes, which Full - TranNet is a pure variational encoder

and Full - Cycle+ gains powerful generative ability from

adversarial learning, but both of them have clear drawbacks on

the resemblance level between synthesized sketch and its input

image (See Fig. 3). It is testified by the results of FG-SBIR

accuracy that Full - Cycle+ and Full - TranNet are far more

worse than our full model and other competitors. The overall

scores for FG-SBIR are quite low that even human sketch

can only obtain about 10% in acc.@1 and 45% in acc.@10,

which confirms this metric is a much harder one but more

reasonable to evaluate how well the synthesized sketch can

resemble the corresponding image [14]. We can see that our

full model can achieve comparative FG-SBIR results to the

best model Shortcut (2.51% vs 2.98% in acc.@1 and 17.27%
vs 17.43% in acc.@10). What’s more, we can witness obvious

contributions of each key component. Additionally, our model

is also capable of a reverse task on sketch-to-image translation.

Example qualitative results are shown in Fig. 4.

Fig. 4. Example sketch-to-image translation results.

V. CONCLUSION

In this paper, for the first time, we propose an unsupervised

approach for image-to-sketch translation by developing a cy-

cle+ consistency loss and exploiting the edge cue from real

image, which resolve the problem of representation shifting

caused by learning from unpaired image-sketch data. Exper-

imental results on sketch recognition and SBIR illustrate the

effectiveness of our method. In addition, our model is capable

of sketch-to-image translation as well.
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