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Abstract—Humans tend to understand image scene by recog-
nizing visual elements, then conjecturing and inferring based on
them, hence are able to search relevant images. In this paper, we
study the problem of complex image retrieval by reasoning image
dense captions, which is similar to the way of human perception
for searching images. Specifically, we transform the problem
of complex image retrieval into a dense captioning and scene
graph matching issue by using structured language descriptions
for retrieval. Experimental results on a novel proposed large-
scale content-based image retrieval dataset demonstrate the
effectiveness of our proposed method.

Index Terms—Image Retrieval, Dense Caption Reasoning,
Captioning, Scene Graph Matching, Deep Learning

I. INTRODUCTION

Retrieving images by visual query is one of the most
attracting vision problem, which aims to search for images by
reasoning about the visual elements of query image. It is a very
challenging problem since an ideal retriever should be able to
not only understand the whole scene but also the describing
contents in details. Plenty of previous arts exist for addressing
this task.

Traditional methods for content-based image retrieval often
utilize low-level visual feature representations such as color,
shape and appearance by means of SIFT[1], HOG[2], Fisher
vector[3], etc. Meanwhile, many also rely on richer represen-
tations to work, e.g., bags of features[4], spatial pyramids[5].
However, there is an obvious drawback of the above efforts, in
which semantic gap exists between the hand-crafted features
extracted and the profusion of high-level human perceptions
in regards to the stimuli images. There are mainly two reasons
behind this: (i) the visual variation is quite large in real
images which low-level features can hardly handle with, (ii)
people often search images after inferring, that is, people tend
to conjecture different visual concepts to be relevant, e.g.,
“food, forks, knives and plates” might be evidence of inferring
“kitchen”, “restaurant” or even “family gathering”.

Recently, there has been much interest in dealing with
CBIR(Content Based Image Retrieval) by matching the visual
elements of images in forms of natural language, where
image captioning plays the key role. Image captioning[6][7][8]
achieves convincing performance due to the power of deep
learning techniques. It significantly expands the complexity
of the label space from a fixed small set of categories to
sequences of words, which are able to express significantly
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Fig. 1. Upper Left: Query image. Upper Right: Part of its scene graph to
query image. Below: Example output relevant images, which contains very
similar visual concepts like “fruits”, “food”, “dish washer”, “microwave” and
“light wooden storage” to query image.

richer visual concepts contained in images. Inspired by this,
we treat CBIR as a caption generation and matching problem
in this paper.

Caption matching is quite critical for ranking images given
the produced query and candidate captions. It is a text match-
ing problem in the field of NLP(Natural Language Processing),
and traditional method for text matching involves string-based
method[9], corpus-based method[10] and knowledge-based
method[10]. However, these methods are not designed for
image caption matching, which concentrates on matching the
structured visual elements in images, i.e., objects, interactions
between objects and the attributes of objects. Therefore, a
scene graph construction and matching strategy are presented
to handle this problem.

In this paper we deal with the problem of image retrieval
by generating and matching image captions (see Fig. 1).
Specifically, for a given image: (i) a dense set of descriptions
across regions are generated, (ii) a scene graph is constructed
by structuring the produced natural languages, which involves
objects, relationships and attributes, (iii) images are ordered
according to their scene graph similarities given by using
visual concept embeddings, which is capable to calculate se-
mantic distance between any pair of concepts. In addition, we
proposed a novel large-scale CBIR dataset. For that existing
CBIR datasets either comes from classification dataset, e.g.,
VOC challenge dataset[11], which only concentrates on simple
scene, or the dataset[12] contains complex scene images but
without explicit annotation of their similarities. Therefore, to
facilitate CBIR in complex image scenes, we select 10,000 real
images from Visual Genome dataset[13], and for each of the
images we manually labeled 100 of it’s most similar images
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Fig. 2. Model overview. An input image is first processed by a CNN. Then the output is proposed by faster R-CNN which is followed by a three-layer
fully-connected recognition network and described with an LSTM language model to generate image captions. The captions are processed with a scene graph
parser and scene graph matching. Finally we get the similarity of two images based on visual embedding.

according to human’s understanding of the scene in images.
The contribution of this paper is three-fold:

(i) We introduce a dense caption reasoning strategy for
image retrieval, which involves two stages: (a) dense caption
generation, (b) scene graph construction and reasoning. Dense
captioning allows us to describe the contents of images in a
region manner thoroughly, and scene graph makes captions
structured, hence they can be used for matching images.

(ii) A novel method for scene graph matching is presented.
Instead of matching captioning words in a hard manner, we
utilize visual concepts embedding, similar to word embedding,
which is able to evaluate the semantic distance between visual
concepts of scene graph involving objects, relationships and
attributes.

(iii) A novel CBIR dataset is proposed, which contains
totally 10,000 real images, and for each query image, there
are 100 relevant images annotated according to people’s un-
derstanding of the image contents. To our best knowledge, it
is the first time that such a large-scale dataset for complex
scene image retrieval has been proposed.

II. SEARCHING IMAGES BY CAPTION REASONING

Given a query image q and a set of candidate images I =
{i1,i2,. . . ,im}, our goal is to rank candidate images according
to their content relevant to query image q. The overview of our
approach is shown in Fig. 2. There are mainly three steps: (i) A
deep network is pre-trained to generate the dense descriptions
of query image q and candidate images in I . (ii) We then
parse the image captioning to a structured scene graph. (iii)
Score the similarity between pair of images by scene graph
matching. We describe the details as follows.

Image to Captions. Following[8], VGG-16 is used to obtain
deep features for any image of shape 3 ×W ×H and gives
rise to a tensor of features of shape C × W ′ × H ′, where
C = 512, W ′ =

⌊
W
16

⌋
, and H ′ =

⌊
H
16

⌋
. Then the tensor forms

the input to the localization layer which has the same structure

of Faster R-CNN. It internally selects B regions of interest and
returns three output tensors giving information about region
coordinates(a matrix of shape B×4), region scores(a vector of
length B giving a confidence score for each output region) and
region features(a tensor of shape B×C×X×Y ). Afterwards,
we apply a recognition network, which is a three-layer fully-
connected neural network that processes region features and
produces a matrix of shape B ×D(D = 4096) for next layer.
Finally, a LSTM language model is adopted for captioning.

Caption to Scene Graph. To facilitate CBIR, a scene
graph[12] is used to structure the language described contents
of image, including object instances, attributes, and relation-
ships between objects. Formally, caption c can be parsed to a
scene graph as:

G(c) =< O(c), E(c),K(c) > (1)

where O(c) ⊆ C is the set of objects contained in c,
E(c) ⊆ O(c)×R×O(c) is the set of hyper-edges representing
relations between objects, and K(c) ⊆ O(c) × A is the set
of attributes associated with objects. More specifically, we
adopt a variant of the rule-based version of the Stanford
Scene Graph Parser[14], where a Probabilistic Context-Free
Grammar (PCFG) dependency parser is utilized to generate
its scene graph rely on linguistic rules.

Scene Graph Matching. Scene graph matching can be
typically treated as a problem of tuple matching, which aggre-
gates similarities among all the tuple pairs between two scene
graphs. Formally, a function T is defined to obtain logical
tuples from a scene graph:

T (G(c)) = O(c) ∪ E(c) ∪K(c) (2)

For example, the tuples for sentence “an orange fris-
bee in the air” are 〈frisbee〉, 〈air〉, 〈frisbee, in, air〉 and
〈frisbee, orange〉. Previous work[15] performs tuple match-
ing in a hard manner, which means that only the precisely



same tuple pair makes accounts. However, it might not
be an optimal solution for searching images. For example,
k1 = 〈laptop, on, desk〉, k2 = 〈table, under, computer〉 may
describe the same scene, while not be a valid matching in[15].

To make it suitable for image retrieval, we proposed a soft
matching method. First of all, we train a word2vec model by
human generated captions in order to measure visual concept
descriptions commonly appearing in images. Thus, we are able
to convert the descriptions of tuples into word vectors and
measure the semantic similarity between tuples by calculating
their distance. Consequently, searching images turns to tuples
matching. Equation is defined as follows:

similarity(q, i) =

∑N
n=1

∑M
m=1 ‖tqn − tim‖
N ×M

(3)

Where N is the number of elements in the collection T (G(q)),
M is the number of elements in the collection T (G(i)), and
tqn ∈ T (G(q)), tim ∈ T (G(i)).

III. EXPERIMENT

In this section, we present experimental results of our
approach for searching images, and compare with several
baseline arts on a novel large-scale CBIR dataset.

A. Dataset

We select 10,000 pictures from Visual Genome dataset[13]
which contains complex image scenes. For each of these
images, we manually choose 100 most similar images to query
images according to human understanding of images. To our
best knowledge, there is no existing dataset, and it’s the first
time that such a large-scale dataset for complex scene image
retrieval is proposed. Example ground truth images is shown
in Fig. 3.

B. Image Retrieval Settings

Here we show how our method can be used for two tasks:
image and natural language respectively as input to query
images.

Image As Query. We randomly choose 100 images from
our proposed dataset as queries. For each query and all
candidate images, our proposed method is used to generate
the captions and parse captions into scene graph. Afterwards,
we rank all the candidate images by scene graph matching as
shown in Eq. 3. We repeat this processing 10 times.

Natural Language As Query. Our method also could be
used for searching images by natural language descriptions.
The process of experiment is almost the same as above,
the only difference is that instead of using image query
(i.e., auto-generated captions), human-generated text descrip-
tion is directly used for searching relevant images. Human-
generated descriptions come from ground truth captions of
Visual Genome dataset.

Fig. 3. Dataset example. The image on the left is a query image. The rest
are ground truth images. We can observe that not only exactly the same scene
of “train” can be retrieved, but also scenes that humans tend to link with are
involved, like “luggage”, “people with luggage”, “railway”, “seat on train”,
“dinner on train” or “people on train”.

C. Competitors

We compare with two low-level feature based methods, two
deep-based approaches, and two different caption matching
strategies to validate our proposed method. Following are the
details:
SIFT: Scale Invariant Feature Transform(SIFT) is used to
extract query and candidate image features, and rank them
according to the L2-norm of their SIFT features.
SIFT+Bag of visual word: We adopt a BoW strategy based
on SIFT features to construct a visual vocabulary by training
data and quantize SIFT features as the final representation.
VGG-16: Convolutional neural network is proved to be suc-
cessful on various vision tasks, including classification. Hence
here we choose Vgg-16, one of the state-of-the-art, to serve
as feature extractor for matching images.
Text-Visual Concept Matching: To validate our scene graph
matching strategy, we compare with a state-of-the-art CBIR
deep model[8] on a text query image experiment. Specifically,
we use the same image retrieval model as the one in[8], where
given the query image, corresponding captions are produced,
and thus to match the deep visual features captures.
Scene Graph Hard matching: Our proposed method intro-
duces a soft scene graph matching strategy after captioning.
So we compare with hard captioning matching which applies
scene graph matching method in[15].
Captioning+TF-IDF: Besides hard matching, TF-IDF, which
is often used for text feature descriptor, is utilized to calculate
the similarity between image generated captions, hence the
evidence for ranking.

D. Results & Analysis

Quantitative and qualitative results are shown in Table I
and Fig. 4 respectively. Specifically, Table I reports the top k
accuracy of image retrieval, which is the rate of correct images
appearing in the top k retrieval results, i.e., recall at k noted
as R@k, and k ∈ {10, 50, 100} in our setting.

We can observe from Table I that our proposed method
outperforms all the other competitors. Specifically, for the task
“Image as query”, our proposed method overwhelms all two
low-level feature based methods (SIFT and SIFT+BoW), and
offers an over 3-fold improvement compared to deep-model



Fig. 4. Example image retrieval results. Images in the first colomn are query images, and the rest are their top retrieval results. Orange boxes in result
images indicate exactly the same whole scene to query images. Green boxes indicate the same tuple appear in both query and retrieved images. Blue boxes
indicate image contents unseen from query but could be reasonable inferred. For the query image “a man holding a surfing board in sea”, our method is
able to return pictures about “man holding surfing board”, “man surfing”, “baby on surfing board”, “dog surfing”, and reason out “beach”..

TABLE I
TOP K RESULTS (R@K, HIGHER IS BETTER) FOR IMAGE RETRIEVAL.

Image As Query R@10 R@50 R@100

SIFT 0.0 0.08 0.08
SIFT+BoW 0.12 0.08 0.21
VGG-16 0.21 0.14 0.15
Scene Graph Hard Matching 0.33 0.32 0.43
Captioning+TF-IDF 0.31 0.23 0.57
DCR-Image Query (Our) 0.42 0.48 0.67

Text As Query

Text-Visual Concept Matching 0.01 0.13 0.24
DCR-Text Query (Our) 0.04 0.17 0.28

VGG-16. Moreover, compared with all the other matching
strategies (Scene Graph Hard Matching and Captioning+TF-
IDF), our approach achieves better performance which vali-
dates the effectiveness. For the task of “Text as query”, our
proposed method also shows better performance compared
with state-of-the-art image retrieval algorithm. Fig. 4 shows
some sample image retrieval results.

IV. CONCLUSION

We introduced a novel approach for complex image re-
trieval. In particular, given an image, a captioning network
is utilized for dense caption generation, then a scene graph is
constructed by using the dense captions, hence a graph match-
ing algorithm is applied to calculate the similarity between
images. In addition, we proposed a novel CBIR dataset which
contains 10,000 images. Experimental results over several
baseline methods validated the effectiveness of our proposed
approach.
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