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ABSTRACT

Sketches are distinctly different to photos. They are highly
abstract and exhibit a severe lack of visual cues. Prior works
have therefore explored additional traits unique to sketches
to help recognition such as stroke ordering. In this paper,
we pioneer in studying the role of structure in sketches,
for the task of sketch recognition. In particular, we pro-
pose a novel graph representation specifically designed for
sketches, which follows the inherent hierarchical relationship
(“segment-stroke-sketch”) of sketching elements. By con-
forming to this hierarchy, we also introduce a joint network
that encapsulates both the structural and temporal traits of
sketches for sketch recognition, termed S3Net. S3Net em-
ploys a recurrent neural network (RNN) to extract segment-
level features, followed by a graph convolutional network
(GCN) to aggregate them into sketch-level features. The
RNN first encodes temporal cues in sketches while its out-
puts are used as node embedding to construct a hierarchical
sketch-graph. The GCN module then takes in this sketch-
graph to produce a structure-aware embedding for sketches.
Extensive experiments on the QuickDraw dataset, exhibit su-
perior performance over state-of-the-arts, surpassing them by
over 4%. Ablative studies further demonstrate the effective-
ness of the proposed structural graph for both inter-class,
and intra-class feature discrimination. Code is available at:
https://github.com/yanglan0225/s3net.

Index Terms— Sketch Recognition, Graph Convolu-
tional Network

1. INTRODUCTION

Recent advances in touchscreen devices have made sketching
a much easier task for many. Research on sketches has con-
sequently flourished. Sketch recognition is a central task in
sketch understanding, and acts as the basis for downstream
tasks such as sketch synthesis [1], forensic sketch analysis
[2], and sketch-based image retrieval [3, 4, 5]. Sketches are
however very different to photos. The high extent of abstrac-
tion and variance in a sketch pertaining to its real-life object,
makes sketch recognition quite a challenging yet appealing
task.

Earlier studies had focused on designing hand-crafted feature
extractors from photo feature representations. With the ad-
vent of deep learning, Yu et al. [3] proposed a sketch-specific
convolutional neural network named Sketch-a-Net. Not only
did it outperform earlier hand-crafted features significantly,
but also surpassed human performance. With the release of
QuickDraw [6] dataset having millions of free-hand human
sketches, it was possible to approach sketch research using
some data-driven approaches. Xu et al. [7] proposed Sketch-
Mate combining RNN with conventional CNN under a dual-
branch setting. Such works focus on visual cues, although
some of them involve temporal cues as well.
These CNN based works ignored structural specifications of
sketch. Structure plays an important role in sketch related
works as, despite various appearances, structures are inher-
ently invariant. Using the perception of structure, humans are
able to recognize sketches easily.
We believe incorporating this fundamental idea of inherent
structure would be highly beneficial to sketch recognition.
This intuition guided us to explore the possibilities and im-
plications of a sketch-graph. Graph is a powerful tool to rep-
resent structure related information. Quite a few works have
discussed on formulating graph in computer vision, such as
the graph of a point cloud[8], gesture[9], and skeleton[10].
However there is no clear standard on building a graph for
each sketch, as there is neither any accepted rule for a definite
node nor a clear relationship to connect them.
In this paper, we propose a method of building a sketch-
graph based on some general internal relationship in a sketch.
We have observed that every sketch stores an ascending hi-
erarchical relationship “segment-stroke-sketch”. Using this
relationship we build a sketch-graph such that nodes can
represent elements at different levels, connected to one an-
other using rules as described later in Sec 3.3. Based on
this sketch-graph, we propose a joint network comprising
a RNN sub-module and a GCN sub-module connected to-
gether via a graph-building module. The RNN module en-
codes the stroke temporal information, whereas, the GCN
module aggregates a global embedding for each sketch. Fi-
nally, an uniquely designed graph-building module bridges
the two sub-networks. Motivation behind using GCN sources
from the fact that graph convolutional operation can aggregate
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Fig. 1. Hierarchical sketch-graph construction. Leftmost
frame shows color-coded segments obtained from original
sketch after stroke-cutting. For each group, a representative
node (central frame) is selected to simplify connections in a
sketch-graph. Finally, a virtual central node (VCN) is added
as a global embedding (rightmost frame). Edges can connect
a representative node to its segment nodes (blue), or 2 repre-
sentative nodes of the same stroke based on temporal order
(red), or the VCN to any representative node (yellow).

nodal features from its neighbours and update accordingly to
obtain a better distinguishable global embedding. We have
trained S3Net on a subset of QuickDraw [6] dataset having
4,312,500 sketches. Results obtained from various experi-
ments show our model S3Net to have outperformed state-of-
the-arts significantly. This shows that a highly distinguishable
embedding representation can be obtained by incorporating
temporal and structural traits of a sketch.
To summarise, our main contributions in this work are:
(i) we propose an effective approach to build a sketch-graph
implementing the segment-stroke-sketch hierarchical rela-
tionship.
(ii) Based on that, we propose a joint network which can learn
temporal and structural cues simultaneously, the S3Net.

2. RELATED WORK

Sketch Dataset Collecting free-hand sketches for perform-
ing vision tasks is quite difficult and time consuming. This is
because numerous sketch samples with a high degree of varia-
tion is required to supply sufficient representation of each cat-
egory. TU-Berlin [11] is one such dataset that hosts a collec-
tion of 20,000 human sketches, consisting of 250 object cat-
egories with 80 samples in each. Several datasets have been
collected thereafter for various tasks [3, 12] thus promoting
multiple studies on sketch. Out of all such datasets, Quick-
Draw [6] is the largest so far. With a capacity at 50 million,
it provides 345 object categories, having more than 100,000
sketches per category, thus alleviating the lack of large scale

paired sketch datasets.
Sketch Recognition Sketch recognition is a fundamental
problem in sketch related studies. One approach towards
solving it is to focus on the combination of hand-crafted fea-
tures and classifiers [11, 13, 14] in a fashion similar to tradi-
tional image recognition. On the other hand, Sketch-a-Net [3]
employed convolutional neural network (CNNs) for sketch
recognition using the TU-Berlin [11] dataset, thus introducing
deep learning in this sphere of sketch. However, such works
focused only on visually abstract traits of sketches instead of
sequential ordering of its strokes. That issue was alleviated by
involving RNNs, as in [15] where a sequence of cumulative
stroke images was fed into a Gated Recurrent Unit-based ar-
chitecture for sketch recognition. Recently it has been shown
that stroke-level ordering information helps in learning more
discriminative feature representation [7], by simultaneously
encoding visual abstract and temporal traits via a two-branch
late fusion network.
Graph Convolutional Network Various deep learning
paradigms like CNNs, RNNs, and Variational Auto Encoders
(VAEs) can effectively extract latent representation from Eu-
clidean data. However most of such applications deal with
non-euclidean data in the real world. Overcoming this issue,
Graph Convolutional Networks (GCNs) provide a solution for
such non-euclidean data. For instance, Thomas N et al. [16]
trains a semi-supervised node classification network via a lo-
calized first-order approximation of spectral graph convolu-
tion. Node classification [16], link prediction [17], and graph
classification [18] illustrate some more applications of GCNs.

3. METHODOLOGY

3.1. Preliminaries

To begin with, a graph can be represented as G = (V,E)
where V = {v1, v2, ..., vn} is the set of nodes, and eij =
(vi, vj) ∈ E denotes an edge. An adjacency matrix can be
denoted asA ∈ {0, 1}n∗n whereAij = 1 if eij ∈ E. Further-
more each node of the graph associates itself with a feature
vector hv ∈ Rd. Therefore, a graph holds the node feature
matrix X ∈ Rn∗d.

3.2. Sketch Format

It has been widely accepted that a sketch is represented as
a sequence of strokes with each stroke consisting of a set of
segments. This format owing to its sequential appearance, is
suitable as inputs to a recurrent neural network, which has
been adapted to model the temporal property in a sketch.
As introduced in Sketch-RNN [6], a segment can be presented
in a stroke-3 format, si = (4x,4y, p). The first two el-
ements are offsets from last segment in x and y directions
respectively, while p ∈ {0, 1} represents the drawing state
where, p=1 if si is the end point of a stroke, and 0 otherwise.
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Fig. 2. S3Net. The RNN sub-module takes in a sketch sequence and outputs a node embedding matrix via a fully-connected
layer. That matrix is used to build a sketch graph which is subsequently fed into the GCN sub-module. The feature generated
by GCN is used for classification via a fully-connected layer.

3.3. Graph Learning on Sketch
Building a sketch-graph poses an inevitable challenge while
trying to explore structural invariance in sketch. To tackle
this problem we propose an intuitive method in this paper,
validating its results via experimentation.
Nodes: We treat each segment of a sketch sequence as a node
in a sketch-graphG, and impose a hierarchical principle based
on stroke segmentation to construct the edges. Stroke seg-
mentation is quite meaningful for constructing a sketch-graph
as too long a stroke might contain multiple semantics which is
detrimental to modelling sketch structural characteristics. Ac-
cording to Li et al. [1], medium strokes have better semantics
which is valuable to sketch-graph construction. Stroke length
and turn-points are the two factors to be considered during
stroke segmentation procedure. While turning points bring
in semantic variations, histogram of stroke-lengths decide the
length-cutting threshold based on each class. Long strokes
are cut into shorter segments based on those two factors. Seg-
ments in a sketch sequence are divided into different groups
viz, uncut short strokes and stroke segments of long strokes.
For each group, a representative node is selected to simplify
the connections in a sketch-graph. Finally, a virtual central
node is added to the sketch-graph to get global embedding as
shown in Fig. 1.
Edges: There are 3 ways of connecting two nodes via an
edge. (i) By connecting a representative node to its remain-
ing nodes from the same segment group. (ii) By chrono-
logically connecting two representative nodes from the same
stroke based on their temporal order. (iii) By joining the vir-
tual central node (VCN) with any representative node. Hence,
a pair of nodes when connected by an edge, relates to a rela-
tion corresponding to either of these three rules. Therefore,
we get a hierarchical graph structure “segment-stroke-sketch”
of S3Net, as illustrated in Fig 1.

3.4. Network Architecture
Overview As mentioned earlier, sketches are significantly
different from general color images. They are highly abstract,
consisting of only a few strokes. The temporal and structural
characteristics are quite typical of a sketch thus making them

crucial to sketch-research. In this work, we pioneer in propos-
ing the RNN+GCN architecture, over an end-to-end learning
paradigm. These two sub-networks interact via a graph build-
ing module in a concatenated fashion.
Architecture As shown in Fig 2, S3Net consists of three sub-
modules viz, (i) A RNN encoder that inputs a sketch sequence
and outputs a time-step state as a node embedding, (ii) A
Graph Building Module which receives that node embedding
and builds a sketch-graph as illustrated in Sec 3.3, (iii) A GCN
module which inputs that sketch-graph and delivers a global
embedding in the feature space.
For an input sketch, sequence S = [s1, s2..., sn] represents
a forward sequence, where si is a segment. This is fed
into a forward pass of BiLSTM, from which we obtain a
hidden state output h. Simultaneously, a reverse sequence
S′ = [sn, sn−1, ..., s1] is fed as the input for a backward pass
of BiLSTM and translated to a hidden output h′. These two
resulting directional outputs are concatenated together as joint
hidden states. We use a fully-connected layer, mapping the
hidden state of each time step to 128D thus obtaining a martix
X ∈ Rn×128 as the node embedding. Initializing embedding
of VCN with a zero vector provides the final node embedding
matrix asX(n+1)×128. Therefore, the node feature matrix in a
sketch-graph is given asX ∈ R(n+1)×128, with the adjacency
matrix A ∈ R(n+1)×(n+1) being constructed as mentioned in
Sec 3.3.
The “message passing” architecture, a general framework of
spatial-based graph convolution, is described as follows:

X(k) =M(A,X(k−1); θ(k)) (1)
where X(0) is a node feature matrix X , X(k) is the node fea-
ture computed after k GCN layers, M is the message passing
function which depends on adjacency matrix A and parame-
ters θ(k). For implementation, a popular variant [16] is used,
where M is implemented with a linear transformation and a
ReLU readout function:
M(A,X(k−1); θ(k)) = ReLU(D̃−

1
2 ÃD̃−

1
2X(k−1)W k)

(2)
where Ã = A + I , D̃ =

∑
j Ãij and W k is a parameter



matrix. To obtain a better global feature, we employ a dif-
ferentiable pooling [19] operation. This lets us use GCN’s
output at layer k− 1 to learn assigning of nodes to clusters in
layer k. Following DIFFPOOL, we receive a coarse sketch-
graph which contributes to learning a global feature for graph
classification.
Loss Our loss function includes three terms viz, a Negative
Log Likelihood Loss (NLL) L(y), an Auxiliary Link Pre-
diction LLP and the Entropy of the Cluster Assignment LE ,
where last two terms are the same to [19]. Formally, our final
loss is defined as:

L = L(y) + LLP + LE (3)
L(y) = −log(y) (4)

LLP = ||A(l), S(l)S(l)T ||F (5)

LE =
1

n

n∑
i=1

H(Si) (6)

L(y) is used to minimize the distance between the outputs of
model and labels distributions. LLP aims to alleviate falling
into spurious local minimum early in training, whereA(l) and
S(l) are the adjacency and assignment matrices at layer l re-
spectively. || · ||F refers to the Frobenius norm, H is the en-
tropy function, and Si, the ith row of S. LE aims to regularize
the entropy of the cluster assignment.

4. EXPERIMENTS

4.1. Datasets

Dataset splits The sketches come from Google QuickDraw
dataset [6], which is by far the largest free-hand sketch
dataset. It contains 345 categories contributed by players of
the game “Quick, Draw!”. For each category, there are 9K,
1K, 2.5K samples for training, validation, and testing respec-
tively. Experimental dataset for S3Net consists of 4,312,500
sketches overall. It is to be noted that players were given
only 20 seconds to complete their art in the “Quick, Draw!”
game. Therefore, the dataset contains many confused classes
like “Cake” and “Birthday Cake”, “Cup” and “Coffee Cup”,
“Hexagon” and “Octagon” etc. These similar category-pairs
add on to the challenges of sketch recognition. Furthermore,
experiments have been based on the original datasets without
any data augmentation or pre-processing.
Implementation Details RNN subnetwork uses Bidirectional
LSTM with two layers, whose input dimension is 3D, with a
hidden size of 512 for each layer. Thereafter it connects to
a fully-connected layer to map features into 128D. Our GCN
subnetwork uses GraphSAGE [20] and DIFFPOOL [19] ar-
chitectures with the chief difference of adding just one DIFF-
POOL layer. S3Net is implemented via PyTorch on a single
Nvidia Geforce GTX 1080Ti GPU. We set initial learning rate
to 0.001 and optimise using an Adam optimizer. The batch
size is kept at 250, setting the dropout probability in RNN
subnetwork to 0.5.

Method Acc.
ResNet-50 [21] 78.76%
AlexNet [22] 73.76%
LSTM [23] 78.35%

BiLSTM [24] 79.87%
Sketch-a-Net [25] 68.71%
SketchMate [7] 80.51%

Doodle-Variant [26] 78.13%
SketchFormer [27] 77.68%
SketchGCN [28] 70.04 %

S3Net 84.22%
S3Net (Stroke-5) 85.10%

Table 1. A comparative study of classification accuracy over
state-of-art methods on QuickDraw dataset.

4.2. Competitors

We have evaluated S3Net against several popular networks
for image classification, such as ResNet [21] and AlexNet
[22]. For feeding into CNNs, we transfer the sketch se-
quences into a raster pixel sketch scaled at [224, 224, 3] with
each channel tiled equally. LSTM [23] also serves as a clas-
sical RNN model used to process sequenced data. Other
such CNN-based strong baselines for sketch recognition in-
clude Sketch-a-Net [25] and SketchMate [7]. Doodle-to-
search [26], which is state-of-the-art for ZS-SBIR, is tailored
for sketch recognition denoted as Doodle-variant. Specifi-
cally, the domain loss and semantic loss are removed from
[26] because they are unavailable in our classification prob-
lem, and a cross-entropy loss is used instead for classifica-
tion. SketchFormer [27] is a transformer-based representa-
tion for encoding free-hand sketches. One of their experimen-
tal setting, TForm-Cont, is with a continuous sketch modeling
using ‘stroke-5’ format. Using ‘stroke-5’ we provide com-
parative results in that contrast, denoted as S3Net (Stroke-5).
SketchGCN [28], a state-of-the-art for sketch segmentation,
has been adjusted here for sketch recognition. The size of
their multi-layer perceptron is expanded from 32 to 64, such
that a 768D feature generated by SketchGCN, can be used for
classification.

4.3. Results and Analysis

After comparing S3Net with several state-of-the-art methods,
we present the following quantitative results from Table 1: (i)
S3Net achieves the highest accuracy of 0.8422, which is 4%
above SOTA (0.8051). It proves that combining temporal and
structural characteristics, classify abstract sketches better in
feature space. (ii) CNNs and RNNs show a narrow perfor-
mance gap (0.7876 vs 0.7987); which confirms that discrim-
inative power of features based on temporal cues is slightly
better than those based on appearance. (iii) Having more pen
states for each segment, S3Net (Stroke-5) outperforms Sketch-



Fig. 3. Figure shows the feature distribution in feature space
of RNN method (Left) and S3Net (Right). We visualize five
color coded different categories viz, “basket”, “bear”, “teddy-
bear”, “blackberry” and “purse”. (T-SNE has been used for
dimensional reduction)

Fig. 4. Clustering result of “bird” data showing different color
coded sub-clusters. Left: RNN; Right: S3Net. We randomly
select three samples points from the two sub-clusters in S3Net
and visualize them respectively. And we find the correspond-
ing sample points in RNN sub-clusters.

Former, and even beats the original Stroke-3 setting, reach-
ing 0.8510, but comes at a cost of twice the training time.
Furthermore, Fig. 3 shows GCN-generated features to ob-
tain more separable sub-clusters than RNN ones, thus proving
that GCNs can get better recognition performance using this
structure. Interestingly, we also discovered our learned graph
representation is also able to discriminate sketches within cat-
egories, roughly by their topological structures. Fig. 4 offers
an illustrative example of the category “bird”. It can be seen
that S3Net features tend to form two clear clusters of distinct
structural patterns, whereas RNN features are more mixed.

4.4. Ablation Study

We conducted an ablation study to analyse different ways of
building a sketch-graph (Table 2). Node denotes the com-
ponent that is considered as a node in the sketch-graph. We
define 4 options: (i) Stroke: Each stroke represents a node.
(ii) Segment: Every segment denotes one node. (iii) Seg-
ment+Stroke: A stroke and its corresponding segment, are
both selected as nodes. Hence total number of nodes equals
the sum of all strokes and segments. (iv) Segment+RN+VCN:
In this setting, nodes are built as mentioned in Sec 3.3 fol-

# Node Edge Stroke-cut Acc.
1 Stroke Full × 68.98%
2 Random × 63.77%
3 Segment Full × 71.79%
4 Random × 64.31%
5

Segment+Stroke
Full × 71.90%

6 Hierarchy × 75.76%
7 Hierarchy

√
78.19%

8 Segment+RN Full × 72.90%
9 +VCN Hierarchy

√
84.22%

Table 2. Results of ablation experiments. The column ‘#’
marks different methods of building a sketch-graph.

lowing a ”segment-stroke-sketch” framework. Edge denotes
the way in which nodes are connected in term of elements in
the adjacency matrix. We define 3 such ways: (i) Full: Ev-
ery pair of nodes will be connected. Hence all elements are
1 except those on the principle diagonal as we don’t add self-
loops. (ii) Random: Half of all elements are 1, except on the
diagonal. (iii) Hierarchy: Edges are built as mentioned in Sec
3.3. Stroke-cut denotes a Boolean sense specifying whether
we cut short a long stroke or not. Table 2 findings: (i) Consid-
ering experiments 1 and 2, we see ‘Full’ connection outper-
forms ‘Random’ one. This proves that the latter aggregates
quite a lot of noisy messages resulting in performance degra-
dation. (ii) Considering experiments 1 and 3, setting each
stroke as a node fetches lower accuracy than setting each seg-
ment as one. A probable reason might be that the number of
strokes in a sketch is usually less than 20, thus restricting ad-
equate message-passing. (iii) Considering experiments 3 and
5, where adding middle level representative nodes is the dif-
ferentiating factor, we find similar performances when it’s set
to ‘Full’ connection. However comparing experiment 5 with
6, we find that hierarchical connections improve performance
significantly. (iv) Finally after comparing experiment 7 with
9, we conclude from inference that the complete hierarchi-
cal structure delivers the best performance. This proves the
supreme efficiency of S3Net in building a sketch-graph.

5. CONCLUSION

In this paper, we have proposed an approach for building a
hierarchical sketch-graph to encode sketch structure. By de-
signing a novel joint network for sketch recognition, sketch-
specific traits have been explored, including temporal cues
and structural invariance. Furthermore, our ablation study
demonstrates the advantage of our hierarchical sketch-graph.
In the future, we will investigate automatic means of con-
structing the initial sketch graph, and explore self-supervised
feature learning by adopting structural invariance as pretexts.
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