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1 Details on Methods
Fine-tuning procedure After pretraining diffusion models, we get the diffusion kernel ε̂θ .
We clone the latent noise xT to x̂T (θ), and iterate through Eq. 3 to get x0. The image is
sampled through the reverse generation process. And guided by image identity loss Li and
sketch perceptual loss Lp, the kernel ε̂θ is updated. We repeat this update process M times
until the model converges, shown in Algorithm 1.

Algorithm 1 Fine-tuning DiffSketching model
input : pretrained model ε̂θ , timesteps T , fine-tuning iterations M
output: fine-tuned model ε̂

θ̂

for m = 1,2, · · · ,M do
Clone the latent x̂T (θ)← xT .
for t = T,T −1, · · · ,1 do

xt−1←
√

αt−1
αt

xt +

(√
1−αt−1−

√
(1−αt )(αt−1)

αt

)
ε̂θ

ε̂
θ̂
← ε̂θ

end
L← λLi +(1−λ )Lp
Take a gradient step on ∇

θ̂
L.

end

Classifier Guidance Prafulla et al. [2] proved that classifier guidance can not only condi-
tionally control the synthesis, but also improve the quality and diversity of the generation.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Dhariwal and Nichol} 2021



2 WANG, KONG, LIN, QI: DIFFSKETCHING: SKETCH CONTROL IMAGE SYNTHESIS

According to the score-based conditioning trick proposed by Song et al. [11], we use the gra-
dient ∇xt log pθ (xt , t) of the classifier to guide the reverse generation process pθ ,φ (xt , t | y)
and can be substituted to a score function ∇xt log pθ (xt , t) =− 1√

1−ᾱt
εθ (xt , t).

∇xt log pθ ,φ (xt , t | y) = ∇xt log
(

pθ (xt , t) pφ (y | xt , t)
)

= ∇xt log pθ (xt , t)+∇xt log pφ (y | xt , t)

=− 1√
1− ᾱt

εθ (xt , t)+∇xt log pφ (y | xt , t)

We define a new noise prediction ε̂θ (xt , t) = −
√

1− ᾱt∇xt log pθ ,φ (xt , t | y) and obtain
the Eq. 4. The parameters of the classifier are fixed during the fine-tuning process.
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Figure 1: Network. (a) U-Net architecture with Wide Resnet blocks and single-head attention
blocks of the Diffusion model that generates 256× 256 images. (b) Multi-head attention
structure integrates sketch and image information to achieve the purpose of image editing.
Reverse Diffusion Kernel The reverse diffusion kernel εθ (xt , t) adopts U-net [9] archi-
tecture with single-head attention blocks and Wide Resnet blocks [14] shown in Fig. 1 (a).
Skip connections connect the same spatial size layers and timestep t after the Transformer
sinusoidal encoding [12] is embedded into each Wide Resnet block. In image editing task,
we replace single-head attention blocks with multi-head attention blocks [7], as shown in
Fig. 1 (b), to fuse sketch information to control synthesis.

2 Details on Experiment

Training details We trained Resnet50 [4] feature extractor on 40 epochs and achieved a
classification accuracy of 99.99% on the Sketchy [10] dataset. We trained a classifier on
ImageNet [1] for 1000 classes. Our model was fine-tuned for 80 epochs and consumed 10
hours on 2 NVIDIA T4 GPUs. We use Adam [6] optmizer with β1 = 0.9 and β2 = 0.999.
The learning rate is set to 0.0001. We use an EMA rate of 0.9999 and 16-bit precision, using
loss scaling [8], for all experiments.

We train the same hyperparameters for our method. In particular, we set λ = 0.4 and
batch size to 4 in all experiments. If the sketch input is less than 4, we reset the batch
size to 1. In the inference stage, we set step interations T to 250. It takes 15 seconds to
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Figure 2: Comparison with Sketch-YOG. All the results of Sketch-YOG come from the pub-
lished models. From top to bottom, we compare the three cases of "Standing cat", "Ganspace
cat" and "Picasso horse" in turn.

get an image synthesis result. To further aid reproducibility, We release our source code
https://github.com/XDUWQ/DiffSketching to reproduce our results.
Comparison with Sketch-YOG [13] Sketch-YOG is the state-of-the-art GAN-based method
in sketch-to-image synthesis task. Both our method and Sketch-YOG have overcome the
limitations of the small type and number of sketch-image paired datasets, and have been suc-
cessful in customizing synthesis models for users. More qualitative comparisons are shown
in Fig. 2. (i) The advantage of our method over Sketch-YOG is that we can achieve superior
image sample quality, as shown in Table 1. (ii) In the bottom two rows of Fig. 2, we com-
pare the results synthesized from Picasso’s sketch of horse. Because Picasso’s painting style
is very unique and artistic, Sketch-YOG fails for the abstract style. Our model measures
the perceptual distance of sketch, so it can solve the impact of bad sketch on the synthe-
sis results. (iii) Sketch-YOG can only be customized on a few separate categories such as
cat, horse, church, etc. If users want to work on other categories, they can only pretrain
StyleGAN2 [5] to achieve that, which will cost a lot of time and computing resources. Our
method is guided by classifiers, so only one model is needed to cover up to 1000 categories.

However, the limitation of both methods is that the models cannot be customized in real
time and they require at least 30K iterations to train. Because the sampling of GAN-based
models require only one forward pass, while the diffusion model requires many steps to
iterate, the reasoning inference is slower than Sketch-YOG.
Interpolation In addition to spherical linear interpolation, we show more interpolation
results from two different initial xT , as shown in Fig. 4 and Fig. 5. (i) Linear inter-
polation: x(α)

T = βx(0)T + (1− β )x(1)T , where β ∼ (0,1). (ii) Trigonometric interpolation:
x(α)

T = cos(θ)x(0)T + sin(θ)x(1)T , where θ ∼ (0,π/2).
Additional qualitative results As shown in Fig. 3, the first five rows of input are from the
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Figure 3: Additional qualitative results.
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Figure 4: Linear interpolation.

Figure 5: Trigonometric interpolation.

Sketchy [10] dataset and the last five rows are from the Quickdraw [3] dataset.
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