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Abstract. Fine-grained sketch-based image retrieval (FG-SBIR) is a
newly emerged topic in computer vision. The problem is challenging be-
cause in addition to bridging the sketch-photo domain gap, it also asks
for instance-level discrimination within object categories. Most prior ap-
proaches focused on feature engineering and fine-grained ranking, yet
neglected an important and central problem: how to establish a fine-
grained cross-domain feature space to conduct retrieval. In this paper,
for the first time we formulate a cross-domain framework specifically de-
signed for the task of FG-SBIR that simultaneously conducts instance-
level retrieval and attribute prediction. Different to conventional photo-
text cross-domain frameworks that performs transfer on category-level
data, our joint multi-view space uniquely learns from the instance-level
pair-wise annotations of sketch and photo. More specifically, we propose
a joint view selection and attribute subspace learning algorithm to learn
domain projection matrices for photo and sketch, respectively. It fol-
lows that visual attributes can be extracted from such matrices through
projection to build a coupled semantic space to conduct retrieval. Experi-
mental results on two recently released fine-grained photo-sketch datasets
show that the proposed method is able to perform at a level close to those
of deep models, while removing the need for extensive manual annota-
tions.

Keywords: Fine-Grained SBIR, Attribute Supervision, Attribute Pre-
diction, Multi-view domain adaptation.

1 Introduction

Sketch-based image retrieval (SBIR) is traditionally casted into a classification
problem, and most prior art evaluates retrieval performance at category-level. [1–
10], i.e. given a query sketch, the goal is to discover photos with the same class

⋆ Corresponding author.
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label. However, it was recently argued [11, 12] that SBIR is more reasonable
to be conducted at a fine-grained level, where instead of conducting retrieval
across object categories, it focuses on finding similar photos to the query sketch
within specific categories. By specifically exploring the unique fine-grained vi-
sual characteristics captured in human sketches, fine-grained SBIR is likely to
transform the traditional landscape of image retrieval by introducing a new form
of user interaction that underpins the ubiquitous commercial adoption of SBIR
technology.

Shared with conventional category-level SBIR, the core problem of fine-
grained SBIR lies with that of cross-domain, that is sketches and photos are
from inherently heterogeneous domains. This domain difference can be summa-
rized into two main gaps: (i) the visual modality gap, i.e., sketches are coarse
line drawings with plain white background and photos are made of dense color
pixels on textured background, and (ii) the semantic gap, i.e., free-hand sketches
are highly abstract and iconic, whereas photos are pixel-perfect depictions of the
visual world. The problem is further made difficult for fine-grained SBIR since
fine-grained correspondence between sketch and photo is difficult to establish es-
pecially given the abstract and iconic nature of free-hand sketches. It is therefore
important for any fine-grained SBIR framework to not only seek a fine-grained
metric, but also learn a joint semantic space to effectively model the domain
gap.

Prior work on fine-grained SBIR either focused on feature engineering [11]
or learning a fine-grained feature space [12]. There has been a largely neglected
problem of addressing the cross-domain gap per sa. Majority of work ease the
domain gap by first converting images to edgemaps, and conduct further com-
parisons by treating the extracted edgemaps as somewhat “good” sketches. For
example, Yu et al. employed Sketch-a-Net [13] that is specifically designed to
parse sketches for both photo and sketch branches in their triplet ranking net-
work. However, sketches and photos are fundamentally different: photos closely
follow natural image statistics and are taken by cameras, yet sketches are drawn
from visual memory and produced by hand. In this work, for the first time,
we explicitly model the cross-domain gap between photo and sketch by jointly
learning a coupled semantic embedding using fine-grained visual attributes.

Parallel to traversing the photo-sketch domain gap, the modality gap between
text and photo has been widely studied in recent years [14–20]. In essence, the
goal of cross-modal techniques is to shorten the semantic gap between text and
photo through projecting the inherently different domains into a common sub-
space and consequently perform matching. Although many were shown to able to
effectively traverse the cross-domain gap, they only conduct transfer at category-
level or domain-level, rendering them unsuitable for fine-grained retrieval where
instance-level differences are sought after instead. Our cross-domain model on
the other hand learns from instance-level sketch-photo pairs, resulting in a sub-
space that is not only domain-independent, but also fine-grained.

In this paper, we present a novel subspace learning method for FG-SBIR
based on attribute supervision and view selection. Our framework performs join-
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Fig. 1. Retrievals based on different level of grains. The top arrow from right to left de-
notes the enhanced semantic abstraction. The bottom arrow from left to right indicates
increasing fine-grained level.

t attribute regressions for sketch and photo modalities, which is able to select
relevant and discriminative feature views from coupled sketch-photo spaces si-
multaneously. The goal is to project sketch and photo features into coupled
attribute spaces. Meanwhile, such space is also capable of predicting attributes
by multiplying the learned projection matrices. Specifically, our objective func-
tion consists of three parts: (i) coupled supervised linear regression, (ii) coupled
group norms of all projection matrices, and (iii) a Frobenius norm regularization.
The coupled supervised linear regressions take advantage of the rich attribute
information to learn local feature-wise relationships at an abstract level. The
group norms of the projection matrices play the role of simultaneous and joint
view selection among multi-view features. The Frobenius norm regularization can
bridge the gap between sketch-photo attribute spaces. Accordingly, an efficient
algorithm is derived to solve the proposed optimization problem. Experimental
results on two fine-grained image-sketch datasets demonstrate that the proposed
method outperforms the state-of-the-art shallow approaches and its performance
is even close to the deep models.

The main contributions of our work are as follows:

1. We propose for the first time an unified cross-domain framework of FG-SBIR.
2. We study how fine-grained visual attributes can be useful to construct a

fine-grained and domain-independent joint feature space
3. We introduce an efficient algorithm to solve the challenging non-smooth

optimization problem.
4. The proposed method outperforms state-of-the-art shallow models and offers

comparable performance against deep alternatives on two recently released
fine-grained photo-sketch datasets.

2 Related Work

SBIR vs. Fine-grained SBIR Traditional sketch-based retrieval tasks usu-
ally focus on global visual similarities and high-level semantics. As a result,
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retrieval is often performed coarsely at category-level. In contrast, fine-grained
retrieval paradigms concentrate on subtle visual and semantic descriptions of
objects. As shown in Fig. 1, most SBIR work can be broadly summarized into
four categories according to the level of detail they operate on: (i) Category-level
retrieval aims to examine objects on category-level [3, 4, 10], e.g., shoes against
chairs; (ii) Subclass-level retrieval differentiate objects on within-class category
level, e.g., shoes are classified into three subcategories according to their general
usage; (iii) Part-level retrieval finds objects according to the subtle part prop-
erties [21], e.g. four high-heel shoes are marked out according to the properties
of heel and boot; (iv) For fine-grained instance-level retrieval [11, 12], the sketch
shoe and two high-heel sandals become the nearest neighbors on the basis of
similarities on the heel, body, and toe. Our proposed fine-grained SBIR model is
able to generalize to all four variations, and we offer experimental comparisons
for each later in Section 4.

Towards Fine-grained SBIR Li et al. [11] first proposed fine-grained SBIR
(FG-SBIR) but limited their study to pose variations only and the cross-domain
gap is only traversed holistically by matching coarse graph structures. Yu et
al. [12] further extended the definition of fine-grained and proposed a new dataset
of sketch-photo pairs with detailed triplet annotation. They developed a deep
triplet-ranking network to learn a fine-grained feature metric, however avoided
addressing the cross-domain gap by converting photos to edgemaps prior to
training and testing. The very recent work of Li et al. [21] remains the single
work that specifically tackled the cross-domain nature of the problem, where they
used three-view Canonical Correlation Analysis (CCA) to fuse fine-grained visual
attributes and low-level features. However, they did not learn a joint feature
space since CCA is only conducted independently on each domain. Moreover, it
required separately trained set of attribute detectors at testing time, making it
less generalizable to other datasets. In this paper, we follow Li et al. [21] in using
fine-grained attributes to traverse different domains, but explicitly learn a joint
fine-grained space to conduct retrieval. Once learned, this attribute-driven space
is also able to perform implicit attribute detection without additional training.

Cross-modal Retrieval Broadly speaking, cross-modal retrieval involves two
main tasks: measure of relevance and coupled feature selection [14]. The chal-
lenge of cross-modal matching is therefore finding a semantic feature space that
can withstand modal variation at an abstract level. Most cross-modal methods
can be classified into three main categories: probabilistic models [15, 16], metric
learning approaches [17, 18] and subspace learning methods [19, 20]. Probabilis-
tic approaches aim to model the joint distribution of multi-modal data in order
to learn their correlation [15]. Metric learning methods set out to compute ap-
propriate distance metrics between different modalities [17]. Subspace learning
approaches map multi-modal data into a common subspace to conduct match-
ing [14]. Among these categories of cross-modal techniques, subspace learning
methods [22–24, 14] have gained state-of-the-art results in recent years. All afore-
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mentioned cross-domain models can not work with instance-level annotations
(e.g., sketch-photo pairs), largely limiting their applicability for fine-grained re-
trieval. Our proposed model is however specifically designed to mine a joint
subspace where cross-domain comparisons can be performed at a fine-grained
level.

3 Fine-Grained SBIR via Attribute Supervision and
View Selection

In this section, we introduce our framework for FG-SBIR based on attribute
supervision and view selection. An effective algorithm is also presented to solve
the proposed objective function.

3.1 Notations

Matrices and column vectors will be consistently denoted as bold uppercase
letters and bold lowercase letters, respectively. Given a matrix M ∈ Rm×n, we
express its i-th row as Mi and j-th column as Mj .

The Frobenius norm of the matrix M is defined as

∥M∥F =

√√√√ m∑
i=1

∥Mi∥22 . (1)

The Group ℓ1-norm (G1-norm) of the matrix M is defined as

∥M∥G1 =
n∑

i=1

k∑
j=1

∥mj
i∥2 , (2)

where mj
i is the j-th segment vector in the i-th column of M.

3.2 Problem Formulation

Suppose there are n pairs of photo and sketch, which are denoted as P =
[p1,p2, ...,pn] ∈ ℜdp×n and S = [s1, s2, ..., sn] ∈ ℜds×n, respectively. As illus-
trated in Fig. 2, pi ∈ ℜdp

is formed by stacking features from all the kp views,

and the feature for each view j is a dpj dimensional vector, i.e. dp =
∑kp

j=1 d
p
j ,

similarly so for each element si in S. The features used for different views
can be low-level features (e.g., HOG), or those extracted from deep networks,
(e.g., [12]). Each photo-sketch pair {pi, si} represents the same object. Let Ap =
[ap1,a

p
2, ...,a

p
n]

T ∈ ℜn×u denotes the attribute label matrix of the photo samples
and u is the number of photo attribute. Similarly, As = [as1,a

s
2, ...,a

s
n]

T ∈ ℜn×v

denotes the attribute label matrix of the sketch samples and v is the number of
sketch attribute.
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Fig. 2. Illustration of the photo sample matrix, P.

As previously discussed, SBIR and FG-SBIR generally belong to the task of
cross-modal retrieval. Recently, many cross-modal approaches [22–25, 14, 26, 27]
have achieved satisfying results on matching photo and text. Yet, all of them
evaluated retrieval results on category-level by calculating the mean average
precision (MAP) [28]. More specifically, given multi-modal sample matrices Xa,
Xb, and class label matrix Y, we can summarize a framework for supervised
cross-modal subspace learning:

min
Wa,Wb

∥XT
aWa −Y∥2F + ∥XT

b Wb −Y∥2F +Ω , (3)

where Wa and Wb are the projection matrices and Ω is some form of constraint.
In this paper, we would like to conduct FG-SBIR in the visual attribute

spaces. It follows that Eq. (3) naturally inspires us to project sketch and photo
into a common attribute subspace as shown in Fig. 3(a). However, it would
otherwise be difficult to define or annotate a desired common space and give it a
clear semantic interpretation like the low dimensional class label matrix Y used
in usual cross-modal frameworks. Motivated by several unsupervised cross-modal
subspace learning methods [22–25], we propose to map sketch and photo data
into two intermediate and isomorphic spaces US and UP that have a natural
correspondence. This means that US and UP are approximation versions for
each other in the ideal case. It follows that we can establish invertible mappings
as follows:

ℜdp � UP � US � ℜds

. (4)

The photo attribute space ℜu itself can potentially be directly used as its
intermediate space UP as shown in Fig. 3(b). For constructing the intermediate
space of sketch US , the following can be adopted to approach UP :

UP ←− AsTs , UP ←− ApTp . (5)

where Ts and Tp are the transformation matrices for sketch sample attribute
matrix As and photo sample attribute matrix Ap, respectively. Mathematically,
we have min

Ts

∥Ap −AsTs∥2F , and min
Tp

∥Ap −ApTp∥2F .
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Fig. 3. Schematic comparison of conventional common-space learning (a), and the
proposed coupled space learning (b)

An important point to note here is that as a result of the abstract nature
sketches, they are often harder to interpret, resulting in a higher degree of noise
in human attribute annotation when compared with photos. Hence the sketch
sample attribute matrix As often loses information and is stuck in sparsity and
low rank. For these reasons, in practice, we opt to the following to approach UP :
min
Tp

∥Ap −ApTp∥2F , whose optimization process starts from Ap.

Our goal is to learn two projection matrices Wp and Ws jointly to map
the associated data pairs into coupled intermediate spaces denoted by the cor-
responding attribute labels, subject to that the distance should be small if they
belong to the same object. Therefore, the proposed objective function is formu-
lated as follows:

J = min
Wp,Ws,T

∥PTWp −Ap∥2F + ∥STWs −ApT∥2F

+λ1(∥Wp∥G1 + ∥Ws∥G1) + λ2∥Ap −ApT∥2F ,
(6)

where Wp ∈ ℜdp×u and Ws ∈ ℜds×u are the projection matrices for coupled
photo and sketch spaces, respectively. Wp is a matrix which consist of weights
for features from each individual view over u different attributes. And Wp can
be re-written as:

Wp =


(wp

1)
1 (wp

2)
1 · · · (wp

u)
1

(wp
1)

2 (wp
2)

2 · · · (wp
u)

2

...
...

. . .
...

(wp
1)

kp

(wp
2)

kp · · · (wp
u)

kp

 , (7)
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where (wp
x)

y ∈ ℜdp
y is a weighting vector contains the weights for all features in

the y-th view of p (photo) sample with respect to the x-th attribute. T ∈ ℜu×u

is a conversion matrix.
Similarly:

Ws =


(ws

1)
1 (ws

2)
1 · · · (ws

v)
1

(ws
1)

2 (ws
2)

2 · · · (ws
v)

2

...
...

. . .
...

(ws
1)

ks

(ws
2)

ks · · · (ws
v)

ks

 . (8)

We want to present sketch data in an approximate space of the photo at-
tribute space. By minimizing the projected residuals with respect to attribute
information, we can preliminarily shorten the gap between the coupled inter-
mediate spaces. And we can minimize the term λ2∥Ap − ApT∥2F to learn the
relationship T between the coupled attribute intermediate spaces. T contains
the attribute mappings across US and UP .

Wp and Ws are able to learn the weight vector for each single view feature,
such that the feature-wise importance corresponding to a certain attribute in
the intermediate spaces can be captured. However, the multi-view features in-
teractions are extremely complicated, i.e., inhibition, promotion or competition
depending on differnet cases. To solve this problem, motivated by [29], a Group
ℓ1-norm (G1-norm) is utilized, i.e., the second part of Eq. (6).

According to the effectiveness of paired Group ℓ1-norms upon Wp and Ws,
inside each column of these two projection matrices, the weight vectors for multi-
view features are organized under the ℓ1-norm framework. The view-wise rela-
tionships of ℓ1-norm enforces the structured sparsity among different views. If
certain view of features does not own enough contribution or discrimination for
certain attribute, the corresponding weight vector of this view will be assigned
with zeros, and vice versa. Within each column inside photo or sketch modality,
the local interrelations among views are captured by Group ℓ1-norm regularizer.

More importantly, our objective function optimizes the Group ℓ1-norm reg-
ularizers of Wp and Ws simultaneously. Therefore, multi-modal data is fully
integrated and equally taken into account to complete more reasonable view
selection without unnecessary information loss. All the weight vectors for all
the views are organized under the ℓ1-norm framework. Hence the global rela-
tionships among all the views are also captured by the coupled Group ℓ1-norm
regularizers:

∥Wp∥G1 + ∥Ws∥G1 =

u∑
i=1

kp∑
j=1

∥(wp)
j
i∥2 +

u∑
i=1

ks∑
j=1

∥(ws)
j
i∥2

=
u∑

i=1

(
kp∑
j=1

∥(wp)
j
i∥2 +

ks∑
j=1

∥(ws)
j
i∥2) .

(9)

In summary, the residual terms based on the attribute labels use the semantic
information to preliminarily shorten the gaps between photo-sketch pairs across
the coupled intermediate spaces. Next the Group ℓ1-norm terms captured the
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local interrelations of multi-view features inside photo or sketch and the global
relationships of data pairs crossing photo and sketch modalities. Finally the
Frobenius norm term enforces the accuracy of attribute space transition.

3.3 Solving for Non-smooth Optimization

The designed objective function contains the non-smooth regularization terms
of Group ℓ1-norm, which is difficult to solve by general methods. The unknown
quantities of our objective function are Wp, Ws, and T. Fortunately, our objec-
tive function has no constraint conditions. We can use the variable separation
approach to derive an alternative iterative algorithm to solve it.

Take the derivative of the objective J with respect to (Wp)i (1 ≤ i ≤ u), we
have 1

∂J

∂(Wp)i
= 2PPT (Wp)i − 2P(Ap)i + λ1D

i
p(Wp)i , (10)

where Di
p is a block diagonal matrix with the j-th diagonal block as 1

2∥(Wp)
j
i∥2

Ij ,

Ij is an identity matrix with the same size as dpj , (Wp)
j
i is the j-th segment of

(Wp)i and includes the weighting vector for the features in the j-th view of
photo sample matrix. Set ∂J

∂(Wp)i
= 0, we can get

(Wp)i = (2PPT + λ1D
i
p)

−1(2P(Ap)i) . (11)

Similarly, we can obtain (Ws)i as

(Ws)i = (2SST + λ1D
i
s)

−1(2SAP (T)i) . (12)

Take the derivative of the objective J with respect to (T)i (1 ≤ i ≤ u), and
set ∂J

∂(T)i
= 0, we can get

(T)i = (AT
p Ap + λ2A

T
p Ap)

−1(AT
p S

T (Ws)i + λ2A
T
p (Ap)i) . (13)

Note that Di
p (1 ≤ i ≤ u) and Di

s (1 ≤ i ≤ u) are dependent on Wp

and Ws, respectively. We can optimize them alternatively and iteratively until
convergence. During each optimization step of Wp, Ws, and T, both of them
are obtained column by column.

The whole algorithm is summarized in Algorithm 1.

1 When ∥(Wp)
j
i∥2 = 0, (6) is not differentiable. Following [30], a small perturbation

can be introduced to smooth the j-th diagonal block of Di
p as 1

2
√

∥(Wp)
j
i∥

2
2+ζ

Ij .

Similarly, when ∥(Ws)
j
i∥2 = 0, the j-th diagonal block of Di

s can be regularized as
1

2
√

∥(Ws)
j
i∥

2
2+ζ

Ij . We set ζ = 1.0000e− 8 in our following experiments.
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Algorithm 1 An efficient iterative algorithm to solve the optimization problem
in Eq. (6).

Input: P = [p1,p2, ...,pn] ∈ ℜdp×n, S = [s1, s2, ..., sn] ∈ ℜds×n,
Ap = [ap

1,a
p
2, ...,a

p
n]

T ∈ ℜn×u.
1.Set t = 0.
Initialize (Wp)t, (Ws)t by solving minWp∥PTWp − Ap∥2F and minWs∥STWs −
ApT∥2F respectively.
Initialize (T )t.
while not converge do

2.Calculate the block diagonal matrices (Di
p)t+1 (1 6 i 6 u) and (Di

s)t+1 (1 6
i 6 u),

where the j-th diagonal block of (Di
p)t+1 is 1

2∥((Wp)
j
i )t∥2

Ij

and the j-th diagonal block of (Di
s)t+1 is 1

2∥((Ws)
j
i )t∥2

Ij .

3.For each (Wp)i (1 6 i 6 u),
((Wp)i)t+1 ← (2PPT + λ1(D

i
p)t+1)

−1(2P (Ap)i).
4.For each (Ws)i (1 6 i 6 u),
((Ws)i)t+1 ← (2SST + λ1(D

i
s)t+1)

−1(2SAp(Ti)t).
5.For each (T )i (1 6 i 6 u),
(Ti)t+1 ← (AT

p Ap + λ2A
T
p Ap)

−1(AT
p S

T ((Ws)i)t+1 + λ2A
T
p (Ap)i).

6.t← t+ 1.
end while

Output: Wp ∈ ℜdp×u, Ws ∈ ℜds×u, and T ∈ ℜu×u.

4 Experimental Results and Discussions

In this section, we describe how to apply the proposed approach for a fine-
grained sketch-based image retrieval task on two recently released fine-grained
image-sketch datasets [12].

4.1 Experimental Settings

Datasets: In the experiment, two newly released fine-grained SBIR dataset [12]
for shoe and chair are utilized. Specifically, there are 419 pairs of photo-sketch
samples in the shoe dataset, and 297 pairs of photo-sketch instances in the chair
dataset. Attribute annotations are also available for both categories. Taking shoe
for example, each shoe is divided into several parts, i.e., toe cap, body, vamp,
hell, etc. For each shoe part, a list of part-specific binary attributes are defined.
For example, the 1st dimension of shoe attribute denotes whether the toe cap is
round or not. For a full list of attributes, please refer to [12] instead. It however
worth noting that although visual attributes are shared semantic concepts (i.e.,
toe cap, shoe heel, chair arm, etc.), corresponding photo and sketch attributes for
the same shoe do not necessarily agree. This is due to (i) attribute annotations
for photos and sketches were conducted independently, and (ii) sketches are often
too abstract and iconic to vividly depict certain attributes.
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Features: HOG and fc7 Deep [12] are served as features in our experiments. The
dimension of HOG is reduced to 210 and 160 for shoe and chair via Principal
Component Analysis (PCA), respectively. fc7 Deep is obtained by using the well
trained modal provided by [12]. We ran the FG-SBIR experiments for 30 times,
and for each time we randomly selected 304/200 pairs of shoe/chair samples for
training and took the rest samples for testing.

Evaluation Metric: We follow the same metric used in [21] and [12] for evalu-
ation, i.e., given a query sketch, “acc.@K”, which is the percentage of relevant
photos ranked in the top K results offered by our proposed method.

4.2 Influence of Visual Attributes

To investigate the effect of visual attributes on retrieval result, we choose d-
ifferent sets of attributes as labels for training. More specifically, (i) we divide
shoe/chair datasets into three/six subclasses, respectively, (ii) we then select 10d,
15d, 21d from the original shoe attribute to form new supervision labels; for the
chair dataset, the selected dimensions are 5d, 10d, and 15d, and finally (iii) we
evaluate the retrieval performances on instance-level. Here, two-view feature via
concatenating HOG and fc7 deep features is used.

Experiments on each setting are repeated for 30 times, where training and
testing data are selected randomly each time. The average retrieval results are
reported in Table 1 and Table 2, where we provide retrieval accuracies of @ K =
1, 5, 10. Corresponding plots are also provided in the Fig. 4.

From results on the shoe dataset, we can observe that accuracy on subclass
labels is the lowest as expected. The reason is that the subclass labels are a coarse
semantic concept and they can not sufficiently capture discriminative visual cues.
Furthermore, we discover that attributes with varying dimensions influence the
retrieval results dramatically: the more attributes used, the better the results.
However, for results on chair (Table 2 and Fig. 4(b)), it is observed that the
performance of 5d attribute is worse than that of subclass label. The reason is
two-fold: (i) the chair attributes introduced by [12] are not overly discriminative
(as we also conclude later in Section 4.3 ), and (ii) the dimensionality of 5d is
too low to form a discriminative feature representation.

In summary, we can conclude that: (i) attribute labels can be effectively used
as supervision information in FG-SBIR; (ii) the dimensionality of the attribute is
strongly connected to the capacity of the fine-grained space and has clear effect
on retrieval accuracy.

Table 1. Instance-level retrieval accuracies using various attributes on the shoe dataset.

subclass label 10d attribute 15d attribute 21d attribute

@ K = 1 10.23% 19.71% 26.12% 34.78%
@ K = 5 35.65% 46.06% 57.74% 64.49%
@ K = 10 53.07% 65.30% 74.20% 79.41%
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Table 2. Instance-level retrieval accuracies using various attributes on the chair
dataset.

subclass label 5d attribute 10d attribute 15d attribute

@ K = 1 14.78% 14.12% 27.04% 36.40%
@ K = 5 44.57% 38.42% 59.76% 66.01%
@ K = 10 63.78% 52.37% 75.81% 84.54%
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Fig. 4. Instance-level accuracies. The bold lines colored red, green, and blue denote the
retrieval accuracies @ K = 1, 5, 10 respectively. In (a), the boxes colored black, green,
blue, and red denote the results obtained by different supervision labels: subclass, 10d
attribute, 15d attribute, 21d attribute. In (b), the boxes colored black, green, blue, and
red denote the results obtained by different supervision labels: subclass, 5d attribute,
10d attribute, 15d attribute. For each box, the central mark is the median. The top and
bottom edges of the box are the 75th and 25th percentiles, respectively. The outliers
are marked individually.

4.3 Results of FG-SBIR

Competitors: We mainly benchmark against the very recent deep triplet model
proposed in [12]. In addition, we also introduce two shallow variants of our model
for comparison:

Deep triplet-ranking: Representing current state-of-the-art for FB-SBIR, the
authors [12] develop a deep triplet ranking network with a data augmentation
and staged pre-training strategy to address the problem of insufficient training
data. We use it for comparison on both the shoe and chair dataset.

As model: In Section 3, we have illustrated that sketch sample attribute matrix
As is usually excessively sparse and low-rank. This is likely to lead to inaccurate
computation results, and exactly optimizing for AsTs that approximate Ap

might not be feasible. In order to verify this, we design the following model for
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verification and comparison:

J2 = min
Wp,Ws,Ts

∥PTWp −Ap∥2F + ∥STWs −AsTs∥2F

+λ1(∥Wp∥G1 + ∥Ws∥G1) + λ2∥Ap −AsTs∥2F ,
(14)

where Ts is the transformation matrices for sketch sample attribute matrix As.
In the following experiments, we denote this method as “As model”.

F model: In order to verify the benefits of multi-view features, we introduce
models using single-view features for comparison. In Eq. (6), the physical sig-
nificance of the Group norm terms is view selection. If we set the coefficients
of Group norms in Eq. (6) as zero when we use single-view features, and the
projection matrices Wp and Ws will lose all the constraints. In this case, our
model can be adjusted as:

J3 = min
Wp,Ws,T

∥PTWp −Ap∥2F + ∥STWs −ApT∥2F

+λ1(∥Wp∥F + ∥Ws∥F ) + λ2∥Ap −ApT∥2F .
(15)

In the following experiments, we denote this method as “F model”. As model
and F model qualify for shallow model baselines, which are derived from some
state-of-the-art shallow cross-modal subspace learning methods elaborated for
image-text matching.

Results and Discussion: Results are shown in Table 3. Overall, it can be ob-
served that, on the shoe dataset, our model using concatenation of HOG and fc7
deep feature offers the best among all the shallow variants and closely resembles
the performance of deep triplet-ranking [12], i.e. 34.78% vs 39.13% for top 1 and
84.54% vs 87.83% for top 10. It is promising to notice that shallow cross-modal
method tailored for FG-SBIR is able to deliver retrieval performances close to
that of deep models where ample training data and extensive user annotations
are required. However, on chairs, our model performed considerably worse than
[12], scoring only 36.40% vs 69.07% for top 1 and 84.54% vs 97.04% for top
10. This phenomenon is largely explained by the lack of discriminative power
of chair attributes, which was also highlighted as part of previous set of experi-
ments (Section 4.2). We believe redesigning a better set of attributes for chairs
would help to boost retrieval performance, but would leave as future work.

In addition, results also show that our model is better than using the single-
view feature by “F model”, i.e. F model (HOG) and F model (fc7 Deep), and
deep feature fc7 Deep is proven to be better than HOG on the FG-SBIR task. It
is interesting that when CCA is applied to fuse HOG and fc7 Deep, i.e. F model
(HOG&fc7 Deep+2View-CCA), it leads to worse performance when compared
against single-view models. The reason is that CCA might result in information
loss when fusing features from different modalities. In contrast, our model is
capable of keep the properties of the original multi-view features as much as
possible via joint view selection. Moreover, in Table 3, we can observe that the
experimental results of “As model (HOG&fc7 Deep)” on the shoe and the chair
datasets are much worse than “Our model (HOG&fc7 Deep)”. It indicates that it
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is more reasonable to use the photo attribute space as the coupled intermediate
space for both photo and sketch. In other words, sketch attribute space might
suffer from data sparsity and low-rank of attribute matrix As, which leads to
inefficiency of the model.

Computational Complexity: Average running time of our Matlab code on a
3.30GHz Desktop PC with 16GB RAM, across 30 experiments conducted on the
shoe/chair datasets, are 0.87 seconds and 0.39 seconds, respectively.

Table 3. Experimental results comparisons.

Shoe Chair
acc.@1 acc.@10 acc.@1 acc.@10

Deep triplet-ranking(fc7 Deep) [12] 39.13% 87.83% 69.07% 97.04%

F model (HOG) 3.04% 31.33% 7.22% 42.92%
F model (fc7 Deep) 30.43% 77.91% 35.77% 80.98%

F model (HOG&fc7 Deep+2View-CCA) 6.96% 28.19% 29.00% 70.15%
As model (HOG&fc7 Deep) 7.48% 56.52% 24.99% 74.64%
Our model (HOG&fc7 Deep) 34.78% 79.41% 36.40% 84.54%

5 Conclusion

In this paper, for the first time, we proposed an unified cross-domain frame-
work for fine-grained sketch-based image retrieval. Our model not only learns
a domain-independent subspace to conduct retrieval, but also ensures effective
fine-grained comparisons at the same time. Different to traditional text-photo
cross-domain methods that works only on category-level, it uniquely learns from
pair-wise sketch-photo data, therefore constructing a coupled space that is fit-
ting for fine-grained retrieval. Once learned the model can also be used to predict
attributes without the need for explicit training of attribute classifiers. Exper-
iments on the latest fine-grained sketch-photo datasets demonstrated the ef-
fectiveness of the proposed method. For future work, we will investigate how
the design of visual attributes affects quality of the learned coupled subspace,
with the immediate hope to further improve retrieval performance on the chair
dataset.
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